Robust Pixel Classification for RoboCup

Andreas Furtig, Holger Friedrich, Rudolf Mester

Visual Sensorics and Information Processing Lab
J.W. Goethe-Universitat Frankfurt am Main
Robert-Mayer-Str. 10, D-60325 Frankfurt am Main
eMail: {fuertig,friedrich,mester }@Qvsi.cs.uni-frankfurt.de
URL: http://www.vsi.cs.uni-frankfurt.de

RoboCup is a challenging environment for vision algorithms, requiring real-
time data processing on very constrained hardware. Although objects have
defined colors, a fact that greatly simplifies the recognition process, every
year the setup is chosen more and more demanding. The optimal and efficient
handling of illumination changes is currently the most challenging problem to
solve. In this paper we present a statistical approach towards robust color-
based pixel classification building on models for color distributions. A fast
implementation of our method, using lookup tables, allows the proposed algo-
rithm to run on the hardware mandatory in the Standard Platform League of
RoboCup.

1 Introduction

Color-based image interpretation is a central task in the RoboCup robot soccer compe-
titions. In the ’Standard Platform League’ of RoboCup, all important objects can be
discriminated by colors: blue and yellow goals, an orange ball, a green field and white
field lines. The robots from different teams are distinguished by pink and light blue bands
around their hip. In spite of this color coding rules, implementing a reliable pixel clas-
sifier remains a challenge, due to the reduced computational power available during the
competition. In fact, participant teams are constrained to use the standard hardware
platform, the humanoid robot Nao from Aldebaran Robotics [I]. The limited hardware
prevents computationally demanding algorithms to be applied.

Since any further behaviour of the robot is based on a precise recognition of all relevant
objects, a robust classifiction is essential: the robot needs to find the ball, walk to it, and
then has to decide to which goal the ball must be kicked to avoid an own goal.

We propose a purely color-based robust pixel classification, which is well-suited to the
hardware constraints found in the RoboCup competition. We do not exploit neighbor-
hood relations in favor of a computationally tractable solution on the standard RoboCup

hardware. For color based pixel labeling, especially illumination changes constitute a
problem, particularly in the face of RoboCup rules focusing more and more on real-world
light conditions.

The native color space of the camera is YUV, which divides the signal into one luminance
and two chrominance components. This allows to disregard minor changes in illumination,
but the standard classificators (based on the distance to a given fixed color value) fail in
presence of significant changes, requiring manual tuning of color tables, etc.

In contrast to common algorithms applied in the RoboCup environment, we use first
and second order statistics (mean vectors and covariance matrices) to describe the class-
specific distribution of colors. This results in a statistically well-founded distance measure
between colors, which in turn is used to decide whether a pixel belongs to a given object
class.

The statistical distribution of color vectors corresponding to the individual semantic
classes is currently obtained using a supervised learning step, based on the manual labeling
of a very large set of training images, containing different illumination conditions.

To speed up computation during the game, training of the classifier is done offline, pro-
viding a lookup table for fast online classification on the robot.

Figure 1: RoboCup 2010 game setup. Objects are color coded, but illumination conditions
may differ. Background is varying.

()

labeled as
. Field
280y I Ball
: Yellow Goal
200 I blue Goal
= [I Line
G150 N
c :
S :
Q.
€100 -]
o
v} :
> 5015.._.. :

.
0 250 N

Figure 2: Distribution of a small set (about 5000) labeled pixels from different images
obtained from the built-in camera of one robot (drawn in the YUV color space).

2 State of the Art

For years, classical thresholding techniques [11] dominated pixel classification in RoboCup.
These algorithms worked well under constant illumination, but required manual tuning of
thresholds each time the lighting conditions changed [3, 2]. In more recent work, advanced
methods have been proposed, for example the concept of soft colors |9, [7, 10, 6]. It allows
a pixel to belong to more than one class, which is beneficial for colors of objects which
are ambiguous under extreme lighting conditions. In the typical RobuCup setting, this
may apply to pixels belonging to the ball and pixels from the yellow goal.

The approach closest to us is by Sridharan and Stone [I3]. It is about learning of a color
models based on Gaussians and has also been applied successfully to the RoboCup setup.

3 Second Order Image Statistics

A sample set of input images typically provides thousands of labeled pixels. Each class
typically forms a cloud of points in a three dimensional YUV space, which can be described
by mean and covariance. See Fig.[T] for a description of the setup and Fig.[2| for a sample
distribution of labeled pixels.

Definitions: Let 7 be the spatial image coordinates, and 7 (Z) the according color vector
in the YUV space:

—

(%) = {(y,u,v)T\y,u,v € {0, 255}}. (1)

We define a set of labels wy,, which will represent the color-coded objects of the RoboCup
scenario, namely five different labels wy, ..., ws denoting the blue or yellow goal, lines,
field or ball.

The training set contains manually labeled pixels ¢
§ = {(T@).3)} £

from a set of images, representing different illumination conditions and game situations.
Let S(k) be the set of all color vectors labeled wy,. Now, we can estimate the mean i), € R?
and the covariance Cj;, € R? [8] of the intensity vectors Z(¥;) contained in wy.

Classification Task: Our goal is to label every pixel in an image by designing a classifier
based on the information collected in the training set. We do not want to adapt to one
given image obtained under one illumination condition, but want to have good classifica-
tion results for a broad range of situations. This comes at the price of performing worse
for a given lighting condition compared to an algorithm tuned exactly for this setup. But
it comes with the benefit of being able to handle a range of situations without tuning any
parameters.
For our statistical approach we need a distance measure between a given pixel color and
each class k. Let us have a look at Fig.[2l Empirically, the shape of the point cloud of
pixels indicates how the distance should be computed: Most of the clouds form a ellipsoid,
and moving along the longer main axis should be cheap because it is likely to stay within
one class, whereas moving perpendicular to that axis should be more expensive because
it is more likely to leave the class. The weighting described here is typically achieved
by applying the principal component analysis (PCA), also known as Karhunen—Loéve
transform (KLT) [12], to identify the main directions of information in the data. As a
result of the PCA, we obtain the Mahalanobis distance [4] between Z(Z;) and the class
S(k), given by

do(T) = (T — i) "C M (T — fin). (3)
The Mahalanobis distance provides a reasonable distance measure which takes the shape
of the distribution into account. To compute the distance between two color vectors, the
inverse covariance matrix is used to compensate for the shape of the distribution. The
decision whether a pixel belongs to the class is performed by thresholding, based on the
weighted distances.
Using the distance measure dj, (f (Z;)), the label is chosen as the one providing the smallest
distance di. The labeling function ¢ is defined as

UI) = argmin di(2). (4)

Since we do not have a rejection class yet, we introduce the label wy for pixel colors,
which do not belong to one of our defined classes. We use a single threshold 7" to indicate
whether a pixel color is rejected or not.
o @) ifd(Z)<T
€<I>:{ (Z) i Z(I)() < (5)

wo else

labeled as

‘| . Field

I Ball

: Yellow Goal
I blue Goal
I Line

250 ~—

200 —] : H : : : T . ‘

Y

100 —"

V component

V)
component 0

Figure 3: Different classes in the three dimensional YUV color space: Ellipses depict mean
and covariance of the color distribution. The classes shown here have different
distances to other classes. This can be exploited to get even better classification
results on previously unlabeled pixels.

Further Improvements: The algorithm described before takes only the distance of a
pixel color to all given classes into account (using a reasonable weighting), but disregards
the relationship between different classes. Fig.[3] depicts a set of ellipses visualizing mean
and covariance of the colors for different classes. The distance between these classes differs
largely, a fact which can be exploited to improve the classifier. Previously unlabeled pixels
may be added by enlarging ellipses if the separation to other classes is still retained, while
other ellipses may be scaled down to improve separation between classes. This improves
the results for unexpected extreme lighting conditions, but comes at the risk to label
pixels which obviously do not fit into any class at all. Finally, we replace the common
threshold by per class thresholds Ty: Let D(Z) = {i|d:(Z) < T}}.

. argmin dy,(Z) if D(Z) £ 0
U(Z) = { keD(@) (6)
wo else

Choosing different values gives us a better handling of unlabeled pixels and allows us to
tune the classification process using our GUI shown in Fig.[4]

A — |
T —
T —
o [
T —

Figure 4: Graphical user interface of the classifier. The software is written in Matlab and
available from our web page [5].

4 Threshold Learning

Given a large set of pixel-to-class correspondences (our training set S), the decision thresh-
olds T}, for each class are chosen such that a cost functional ¢ is minimized (i. e. the number
of false labeled pixels is minimized).

g(s,f):Z¢(S with T = (T} ... T5)" and (7)

(f(@-),wj>

—1 if0ZI) = w; (matches ground truth)
6 (Z(@),w;) =45 if U(T) = wo (8)
10 if U(Z) # wy
We distinguish between three different cases: The computed class is correct, the pixel has
not been labeled at all, or got a wrong label. An exhaustive search among all reasonable

thresholds 7' minimizes the cost function (; for a larger set of classes one may need a
coarse to fine search to cope with the combinatoric explosion.

5 Results

Based on our training set S, the classifier estimates the parameters iy and Cy for each
class. Decision thresholds T}, are obtained as described in Sec.] To validate our results,
we use another test set, which was created in the same way like the training set, but with
different images.

The qualitative analysis gives as a very good result like the one shown in Fig.[)] Severe
illumination changes can be handled without having too much impact on the performance
of the classifier. Using a single threshold for all classes as described first leads to good
results (cf. middle column of Fig.. However, results can be improved with a threshold
for every class, which can be seen especially on the ball surface or on the edges of the
goals (cf. right column of Fig.[5).

To measure the quality of our classifier, we also applied a quantitative analysis. The
classifier is run with the covariances, means and thresholds learned from our training set.
As input the tuples (color value, label pairs) gathered from the test set were used. The
results were combined with the ground truth and conduct us to a accuracy of nearly 97%
with a single threshold used for all classes. Using a threshold for every class improved the
accuracy to a quality of 99% correctly labeled pixels. However, this analysis relies only
on a subset of all pixels that are contained in the images, exactly the which were labeled
by hand. We do not have fully segmented and labeled pictures yet, which then would
contain a class of unrelated, unlabeled pixels (e.g. from obstacles or from the audience).
Hence, these numbers should be handled with care since the topic is still lacking further
research.

Further work could be to combine our work with the ’soft colors’ approach [9], to get an

even better classification of ambiguous colors (which can clearly be seen at the border of
the pole in the middle row of Fig.[5).

6 Real-Time Implementation for Nao Robots

As said before, the robots of the Standard Platform League come with very constrained
hardware: AMD Geode LX800 CPU, 500 MHz, 256 MB RAM. This is standard x86
hardware, but compared to current hardware it is slow in floating point computations.
A straightforward implementation, thresholding pixels colors against given classes and
considering inverse covariance matrices, will cause a lot of multiplications and cannot be
done on the Nao in realtime. Even a fixed point representation of the values is tricky,
requiring a broad range of numbers.

The classifier result is only based on the pixel value itself. Since we do not need any other
information, we can speedup the classification process by storing the classification result
for all possible colors in a three dimensional look up table £ in the memory of the robot.

L :{0..255}% — {0..5}. (9)

Eq.[[] indicates the required range for a component of the YUV color value is between 0
and 255, so we need an array which consists of 256% entries. The trivial implementation
requires one byte per color, resulting in a lookup table of about 16 MB. Accessing the
table is much faster than doing all the floating point computations (in practice more than
20 times), even though each access will typically cause a cache miss (the caches are very

Figure 5: Result of pixel based classification. From top to bottom: Standard situation with
usual illumination, with normal light, in a dark environment. Middle column:
One common threshold for every class. Right column: Separate thresholds for
every class.

small, processing a whole input image will cause both access to source and destination
image and to colors (typically) distributed throughout the whole lookup table).
Anyways, a memory requirement of 16 MB is not acceptable because this will fill most of
the memory available to the user after starting the robot control software. To save space,
one could try to remove the channel Y (it encodes the intensity of illumination and we
want to be independent of different lighting conditions, anyways). This would imply to
rewrite the classifier and presumably decrease the performance for extreme illumination
conditions. Another possibility is to compress the data stored in the lookup table (since
we only have 5 classes, 4 bit would be sufficient) or to compress the input space (dividing
all color values by a power of 2 will drastically reduce the required space, since this
number is raised to the power of 3). We decided to implement the latter method. We
shift the input data by one bit or more, reducing the size of the table to 2 MB or even
less. Shifting by one bit has been proven to work without noticeably reducing the quality
of the classification result. Reducing the size speeds up the whole process, not only by
reducing the number of bytes to be processed but also by raising the probability for cache
hits.

Figure 6: Test of the robust classification result during the soccer competion: German
Open 2010 in Magdeburg.

7 Conclusion and Qutlook

The classification algorithm has been evaluated at RoboCup German Open 2010. During
the matches the labeling algorithm had to process images containing both very different
game situations and largely varying lighting conditions. The good classification result
depicted in Fig.[0]is typical and indicates that our method works well in a typical RoboCup
setting. We can avoid tedious tuning of color tables and thresholds in spite of the highly
variable environment.

References

[1] ALDEBARAN ROBOTICS: Nao Academics Edition. http://www.
aldebaran-robotics.com/Files/DSV3 En.pdf, 2009. Ref. 100609 - cfAcad
vers. 4.1.

[2] BAUMGARTNER, JOSEF: Automatische Farbklassifikation zur Anwendung im
RoboCup. Master’s thesis, Technische Universitdt Darmstadt, Department of Com-
puter Science, 2008.

[3] BRUCE, JAMES, TUCKER BALCH and MANUELA VELOSO: Fust and Inexpensive
Color Image Segmentation for Interactive Robots. In In Proceedings of IROS-2000,
pages 2061-2066, 2000.

[4] DupA, RICHARD O. and PETER E. HART: Pattern Classification and Scene Anal-
ysis. John Wiley & Sons Inc, 1973. ISBN 0471223611.

[5] FURTIG, ANDREAS: Robust Pixel Classification Tool for Matlab. http://waw.
bembelbots.de, 2010.

[6] HENDERSON, NAOMI, ROBERT KING and RICHARD H. MIDDLETON: An Appli-
cation of Gaussian Miztures: Colour Segmenting for the Four Legged League using
HSI Colour Space. In VISSER, UBBO, FERNANDO RIBEIRO, TAKESHI OHASHI and
FRANK DELLAERT (editors): RoboCup 2007: Robot Soccer World Cup XI, volume

http://www.aldebaran-robotics.com/Files/DSV3_En.pdf
http://www.aldebaran-robotics.com/Files/DSV3_En.pdf
http://www.bembelbots.de
http://www.bembelbots.de

[10]

[11]

[12]

[13]

5001 of Lecture Notes in Computer Science, pages 254-261. Springer Berlin / Hei-
delberg, 2008.

PALMA-AMESTOY, RODRIGO A., PABLO A. GUERRERO, PAUL A. VALLEJOS and
JAVIER RUIZ-DEL SOLAR: Context dependent color segmentation for Aibo robots. In
IEEFE 3rd Latin American Robotics Symposium, 2006. LARS °06. IEEE, 2006.

PAPOULIS, ATHANASIOS: Probability & Statistics. Prentice Hall, Englewood Cliffs,
NJ, 1990.

QUINLAN, MICHAEL J., STEVEN P. NICKLIN, KENNY HONG, NAOMI HENDERSON,
STEPHEN R. YOUNG, TIMOTHY G. MOORE, ROBIN FISHER, PHAVANNA DOUANG-
BOUPHA ABD STEPHAN K. CHALUP, RICHARD H. MIDDLETON and ROBERT KING:
The 2005 NUbots team report. Technical Report, The University of Newcastle,
Callaghan 2308, Australia, 2006.

ROFER, THOMAS: Region-Based Segmentation with Ambiguous Color Classes and
2-D Motion Compensation. In VISSER, UBBO, FERNANDO RIBEIRO, TAKESHI
OnAsHI and FRANK DELLAERT (editors): RoboCup 2007: Robot Soccer World Cup
XI, volume 5001 of Lecture Notes in Computer Science, pages 369-376. Springer
Berlin / Heidelberg, 2008.

SAHOO, P. K., S. Sortant, A. K.C. WONG and Y. C. CHEN: A survey of thresh-
olding techniques. Comput. Vision Graph. Image Process., 41(2):233-260, 1988.

SHLENS, JONATHON: A Tutorial on Principal Component Analysis. http://www.
snl.salk.edu/~shlens/, April 2009. Version 3.01; Systems Neurobiology Labora-
tory, Salk Institute for Biological Studies and Institute for Nonlinear Sciencs, Uni-
versity of California, San Diego.

SRIDHARAN, MOHAN and PETER STONE: Color learning on a mobile robot: Towards

full autonomy under changing illumination. In The International Joint Conference
on Artificial Intelligence (IJCAI), 2007.

http://www.snl.salk.edu/~shlens/
http://www.snl.salk.edu/~shlens/

	Introduction
	State of the Art
	Second Order Image Statistics
	Threshold Learning
	Results
	Real-Time Implementation for Nao Robots
	Conclusion and Outlook

