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This paper investigates the recovery of spectral camera sensitivities com-
bining multiple captures of a spectrally measured target under different LED
illuminants. This is especially attractive since novel computer controlled LED-
based viewing booths emerged on the market recently. The effective dimension
of the producible spectral stimuli is higher compared to stimuli that are gener-
ated by using the same target but only a single illuminant. This allows a more
accurate recovery of sensitivities. We estimate the camera sensitivities from
the stimuli using a constrained maximum-a-posteriori approach that considers
additional knowledge on the properties of camera sensitivities. Sensitivities of
a six channel camera are recovered and show a good predicting performance
if used to model camera responses.

1 Introduction

Estimating reflectances (or colors) from camera responses is required in many imaging
applications, such as color reproduction or image analysis. An important class of spectral
estimation as well as color correction methods relies on a detailed knowledge of the imag-
ing system (e.g. non-linearities, spectral channel sensitivities etc.) [9, 10]. Unfortunately,
in most cases such information is not provided by the camera vendor and needs to be
determined in advance.

For accurately determining spectral camera sensitivities usually a monochromator is used
that generates extremely narrow-band stimuli, which are distributed over the whole sen-
sitivity wavelength-range of the camera and allow a simple sampling of the sensitivities.



Unfortunately, a monochromator is rather expensive and often not available. Therefore,
many authors proposed methods that use captures of spectrally measured targets (e.g.
Linear- or quadratic programming [5, 3], projection onto convex sets [6, 7], evolutionary
algorithms [2] etc.). A main problem of such approaches is the relatively low effective
dimension [4] of the considered stimuli if common targets (e.g. Color Checker, IT8.7/2,
Esser etc.) are used and illuminated by a single light source. This is the reason why ad-
ditional assumptions on the properties of common camera sensitivities are considered by
the reconstruction methods, such as smoothness, positivity, boundedness or uni-modality.
The smaller the effective dimension of the stimuli the larger the influence of those assump-
tions on the reconstruction. Furthermore, many methods require additional parameters
(weighting factors) to control the importance of these assumptions compared to the resid-
ual error (see e.g. [8] for a comparison of methods). The reconstruction errors are likely
to be large for a small effective dimension of stimuli, incorrect weighting factors or as-
sumptions.

In this paper, we investigate the recovery of spectral camera sensitivities combining mul-
tiple captures of a spectrally measured target under different LED illuminants. The
approach allows us to generate spectral stimuli with a high effective dimension and, as
a result, a more accurate sensitivity estimation utilizing common targets. This is espe-
cially attractive since new computer controlled LED-based viewing booths emerged on
the market recently.

The main features of the proposed method are:

1. The effective dimension of stimuli is rather high even though a standard LED view-
ing booth and targets are used.

2. No parameters are optimized to weight the influence of residual errors and assump-
tions.

2 Methodology

In this work we consider a discrete representation of spectra by sampling each spectrum
f(X) at N equidistant wavelengths that cover approximately the sensitivity range of the
camera. The result is a spectral vector £ = (f(\1),..., f(Ay))?. A target is utilized
with m different patches having the reflectances ry,...,ry. This target is captured k
times under the LED light sources with the spectral power distributions (SPD) 1y, ..., L.
Considering a linear imaging system with n channels we obtain m - k£ stimuli that are
captured by the camera and produce the sensor responses
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where D is an operator that converts an N-dimensional vector into a N x N-dimensional
diagonal matrix and s, ..., s, are the unknown spectral channel sensitivities. The factor
0% depends on the radiance of the jth LED and the measurement geometry for patch i.
The geometry is defined by the distance and angle to the camera and illuminating LED.



Unfortunately, the measurement geometry differs usually between patches of the target
and from the geometry that is used to spectrophotometrically measure r; (typically cir-
cumferential 45°/0°). Please note in this regard that for accurately modeling the imaging
system using a constant factor 6%/ according to eq. (1) the patches have to be nearly
Lambertian surfaces.

Fortunately, we do not need to determine 6/, i =1,...,m, j = 1,..., k if we transform
eq. (1) into chromaticities (as done e.g. by Ebner [2]). For channel x = 1,...,n the
resulting equations become
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These equations can be rearranged into a simple linear equation system As = 0, where
s=(s17,...,;sn7)  and Ais a (k-m-n) x (n- N) dimensional matrix that depends on
o,y (i=1,...,m,j=1,...,k). In a real application we have to deal with noise e,
so that our equation system is not homogeneous but has the form

. di=1,...,m, j=1,...,k (2)

As =e. (3)

In this paper we assume that the spectral sensitivity sy for channel x is smooth and the
correlation between sensitivities corresponding to different wavelengths can be modeled
by a Toeplitz matrix, i.e.
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where the correlation coefficient p is selected to 0.99. Furthermore, we assume that there
is no correlation between spectral sensitivities of different channels, which does not mean
that they cannot overlap. With this assumption the correlation matrix K for s is block
diagonal and has the form

K=1I,2K, (5)

where I, is the n X n dimensional identity matrix and “®” denotes the Kronecker matrix
product.

We want to select the most likely of those sensitivities that satisfy eq. (3) and have
no negative parts. This requires the solution of a constrained maximum-a-posteriori
problem with the likelihood model shown in eq. (3) and a prior distribution induced by
the correlation matrix K (see eq. (5)). Solving such a problem is especially convenient if
we assume all distributions to be Gaussian and allow uncorrelated zero-mean noise € that
is statistically independent from the sensitivities. In this case, the posterior distribution
is also Gaussian and we can formulate a quadratic programming (QP) problem as follows

minimize s’ (K — WAK) ™ 's (6)
subject to s >0 (7)
Isfly =1 (8)



where W = KAT(AKAT + 0%In,) 7! is the Wiener filter matrix, o2 is the noise variance
and Iny is the (N - n) x (N - n) dimensional identity matrix. The matrix K — WAK in
the objective function is the covariance matrix of the posterior distribution. The solution
of the QP problem are sensitivities s = (s;7,...,s,7)T that maximize the density of the
posterior distribution, are non-negative (see constraint (7)) and normalized to one (see
constraint (8)). Without this normalization the resulting sensitivities would be zero. As
a result we obtain only relative sensitivities. However, this is completely sufficient for
estimating reflectances because they are typically normalized to the reflectance spectrum
of a captured white reference (i.e. the scaling factor is eliminated anyway).

3 Experimental Setup

The proposed method was used to determine the sensitivities of a six-channel (n = 6)
modified Sinar 54H-based camera that was setup in our institute for capturing artwork.
The RGB-based camera back of the Sinar 54H camera has micro-positioning capabilities:
the sensor is moved four times to position each color of the Bayer patterned color filter
array (CFA) over every pixel’s spatial location. Therefore, demosaicing is not necessary.
By mounting a two-stage filter wheel equipped with a blue and a yellow filter in front
of the lens the camera allows us to capture six channel (12 bit) 22 mega pixel images.
The concept is adapted from a setup developed at the Munsell Color Science Laboratory
(Rochester Institute of Technology) [1].

To generate LED illuminants we used JUST NORMLICHT’s LED Color Viewing Light
booth that utilizes six different LED (k = 6). A color checker chart with m = 24 test
patches was spectrally characterized using X-Rite’s EyeOne Pro spectrophotometer and
placed in the viewing booth. For each of the six LED illuminants the target was captured
by the camera in an unidirectional 0°/45° geometry. During each capture we measured the
radiance of the target’s white patch in a similar geometry using a Konica-Minolta C'S1000
spectroradiometer. From this measurement and the patch’s reflectance we calculated the
illuminant’s SPD. The experimental setup is shown in Figure 1(a). The stimuli r;” D(1;)
were calculated by multiplying the SPD of any LED illuminant 1;, j = 1,...,6 with the
reflectance spectra rj, ¢ = 1,...,24 of the Color Checker. The resulting 144 spectral
stimuli are shown in Figure 1(b). The effective dimension of those stimuli as defined by
Hardeberg [4] for an accumulated energy of 99% is 15. Using only one illuminant, e.g.
the broadband white LED, the effective dimension would be only 9.

One limiting factor in our setup is the wavelength range of the spectrophotometer (X-
Rite’s EyeOne Pro) that was used to measure the reflectance spectra of the Color Checker.
Since this range spans only 380nm - 730nm it does not cover the whole wavelength range
of our camera system that is approximately 380nm - 760nm. As a consequence the
spectral stimuli that would be used for calculation are insufficient for reconstructing the
sensitivities. For this reason we mounted an interference UV/IR cutoff filter in front of
the lens and treated it as part of the camera. The filter is used typically for imaging
applications and passes only visible light in the wavelength range from 400nm - 700nm.
Therefore, spectra were also sampled in the wavelength range from 400 nm - 700 nm in 5
nm steps resulting in N = 61.

The camera responses used to recover the sensitivities were obtained by averaging all
pixel responses of a target patch. Since many thousand pixels are used for each patch we
could reduce the influence of noise drastically. Nevertheless, we set the noise variance not



to zero but to 02 = 5 - 1077 to allow for measurement errors of the stimuli (Lambertian
surface assumption etc.). Please note that it is unlikely that those errors follow a nor-
mal distribution and the maximum-a-posteriori approach might provide not the optimal
reconstruction result in such cases.

—
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Figure 1: (a) Experimental setup (b) Stimuli of the Color Checker for the six LED-
illuminants

4 Results and Discussion

The calculated channel sensitivities of the modified Sinar 54H camera are shown in Figure
2(a). Since we do not know the real channel sensitivities we can only validate our results
by comparing real camera responses with predicted responses calculated using eq. (1).
For this comparison we need to normalize each prediction ¢ to the magnitude of the
corresponding real response c as follows

R el
&Y = —=¢C. (9)
12l

The predicted and measured digital counts are then compared by calculating the difference
|&3ev — ¢;| for each channel i =1,...,6.

In a first stage we look on the prediction accuracy of camera responses for the training
stimuli, i.e. for the 144 Color Checker-based stimuli that were used to calculate the
sensitivities. Figure 2(b) shows the measured vs. predicted digital counts (DC). The
points are lying on a line showing a good prediction performance. The mean, 95th-
percentile and maximum absolute differences for all channels between real and predicted
digital counts are shown in table 1 (please note that the channels have a 12 bit depth).
We also show the difference as the percentage of the channel’s maximum digital count
under same illuminant (usually for the white patch).

In terms of absolute and relative errors the prediction performance is good for most
applications. These results are not astonishing since the validation is performed on the
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Figure 2: (a) Recovered channel sensitivities of the modified Sinar 54H camera (b) Mea-
sured vs. predicted digital counts (DC) for the 144 training stimuli. The num-
bers correspond to the channel sensitivities shown in (a)

absolute® relative to max DC [%]

channel mean 95th’® max mean 95th® max
1 1.96 6.77 11.40 0.17 0.57 0.97

2 2.02 5.56 13.23 0.14 0.39 0.92

3 3.34 9.08 13.85 0.32 0.86 1.32

4 3.07 9.27 26.33 0.12 0.36 1.02

5 1.96 5.48 12.53 0.12 0.34 0.77

6 1.96 4.65 8.72 0.30 0.71 1.34

%12 bit depth per channel
b95th percentile = value below which 95% of observations falls

Table 1: Prediction performance of camera responses for 144 training stimuli (Color
Checker under six LED illuminants).

training stimuli. More interesting is to investigate the prediction performance on new
stimuli. For this reason we captured the Esser TE221 test chart (IEC 61966-8) consisting
of 264 color patches and 19 gray patches using the same setup. The reflectance spectra of
the Esser target have a much larger spectral dimensionality than the spectra of the Color
Checker. For the six LED illuminants a total of 1698 stimuli were calculated as described
above and used to predict the camera responses. The results are shown in table 2 and as
histograms in figure 3.

As expected the prediction errors are larger than the errors for the training stimuli. How-
ever, the mean errors are still small and below 0.5% of the maximum camera response.
Even the 95th percentiles are around 1% of the maximum responses. This indicates that
the sensitivities could be used to model the camera quite accurately for most stimuli. In
contrast to predictions of the test stimuli the maximum errors are quite high (especially
for the third and sixth channel). In such cases estimating reflectances would probably
lead to large spectral root mean square and color errors. Apart from inaccurate sensitivity



absolute® relative to max DC [%]

channel mean 95th® max mean 95th® max
1 2.31 8.37 29.45 0.20 0.73 2.57
2 3.14 12.09 55.33 0.24 0.92 4.19
3 4.42 12.71 74.92 0.45 1.28 7.55
4 6.77 30.25 91.00 0.26 1.14 3.44
5 2.83 10.61 55.25 0.19 0.71 3.71
6 2.43 7.51 34.26 0.39 1.22 5.54

@12 bit depth per channel
b95th percentile = value below which 95% of observations falls

Table 2: Prediction performance of camera responses for 1698 test stimuli (Esser TE221
under six LED illuminants).

estimation for distinct wavelengths (e.g. due to a still insufficient spectral variability of
test stimuli for those wavelengths) one possible explanation of the relatively large maxi-
mum errors could be the Lambertian surface assumption that is not always valid for color
targets. As a result the stimuli calculated by multiplying the reflectance spectra (mea-
sured by a 45°/0° circumferential geometry) with the SPD of the illuminant (measured
by the spectroradiometer) are not the stimuli that are captured by the camera. Further
investigations of the targets are required to validate this hypothesis.

5 Conclusion

We investigated the reconstruction of camera sensitivities using captured stimuli gen-
erated by a standard reflectance target sequentially illuminated using multiple LEDs.
Such stimuli have a higher effective dimension than stimuli generated with the same tar-
get using only a single illuminant. For a computational reconstruction method a high
spectral dimension of stimuli is beneficial to reduce the influence of assumptions on the
reconstruction.

To allow for different measurement geometries we transform the camera responses into
chromaticities assuming a Lambertian surface of the target patches. The sensitivity recon-
struction is performed by solving a constrained maximum-a-posteriori problem resulting
in positive sensitivities that accurately predict the camera responses for the test stimuli.
We tested the approach using a six channel camera, a novel LED viewing booth and a
Color Checker target. The reconstructed sensitivities were validated by predicting camera
responses from stimuli that were generated using an Esser TE221 target illuminanted by
multiple LED illuminants. The mean prediction error was below 0.5% of the maximum
camera response and the 95th percentile around 1%. Those values are reasonable for many
color correction or spectral reconstruction methods. The maximum errors show a larger
disagreement (up to 7.5% of the maximum camera response) which might result from
an inaccurate sensitivity estimation for particular wavelengths due to a still insufficient
spectral variability of test stimuli for those wavelengths. Another explanation could be
an invalid Lambertian surface assumption for distinct patches of the target.
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Figure 3: Histogram of differences between predicted and measured camera responses (dig-
ital counts - DC) for the 1698 test stimuli (Esser TE221 under six LED illumi-
nants), i.e. 10188 channel values. (a) Absolute difference (b) Difference relative
to the maximum digital count (white patch).
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