Image Processing Method for Colour Image Preference

L. Beke*, G. Kutas*, Y. Kwak**,

G. Y. Sung**, D. S. Park**, P. Bodrogi*

*University of Pannonia, Veszprém, Hungary

**Samsung Advanced Institute of Technology (SAIT), Kiheung, Kyeongki-Do, Korea

Bildverarbeitungsmethode zur bevorzugten Erscheinung von digitalen Farbbildern

Colour image preferenceprevious studies

- Young observers, elderly observers
- Bottom-up methodology
 - measuring basic HVS properties
 - CSFs
 - optical density changes in the crystalline lens
 - but higher mechanisms are involved
 - Results not applicable to display optimization directly

Colour image preferencepresent work

- Top-down methodology
 - preference differences using spatially complex stimuli
 - photorealistic images
 - global and local contrast
 - white point
 - average chroma
 - image colorization
 - insufficient to reconstruct the early vision properties of young adults for elderly observers to model image preference differences among the age groups

- Image quality was often formulated with respect to a reference image
 - S-CIELAB, iCAM,
- based on a metric in the image space
- using models of the human visual system
- or a similarity-based approach
 - taking the direction of image distortion into account

No-reference image quality assignment and enhancement

- through user preference data
- virtual "reference image": a cognitive "ideal" representation of the input image
- image enhancement algorithm
 - a set of color image processing transformations to enhance the input image without a real reference image
 - to approximate a virtual "most preferred image" of the scene depicted in the input image
 - with respect to the age of the user

Image transforms – present work

- 4 of 11 transforms turned out to be relevant to enhance colour image preference
- modifying the 3 perceptual correlates of CIECAM02:
 J, C and h
- the 4th transform modifies the white point of the image

The LE transform (*J*-transform)

- LE: a local lightness contrast enhancement (sharpness / blur)
 - Wallis-filter, applied pixelwise on the entire image
- For the *ij*th pixel:

$$J'_{i,j} = (J_{i,j} - m_{i,j}) \cdot p + m_{i,j} \qquad m_{i,j} = \frac{1}{(2 \cdot w + 1)^2} \cdot \sum_{k=i-w}^{l+w} \sum_{l=j-w}^{l+w} J_{k,l}$$

p<1: blur, p>1: sharpening, p=1: intact w denotes the radius of the convolution window in which m_{ij} was calculated

The TC transform (*J*-transform)

- TC (tone curve):global contrast enhancement algorithm
 - modifies the J value of all pixels in the image, according to a sigmoid function $f_{TC}(J_{ij} = f_{TC}(J_{ij}))$
 - f_{TC} is a continuous Bézier spline with 4 control points
 - this results in higher lightness for light colors and darker lightness for dark colors - compared to the mid tones
 - enhances the global contrast of the input image

The TC transform (*J*-transform)

- CH:hue-dependent chroma boost
- increases/decreases the CIECAM02 C correlate with different amounts of chroma change in different h ranges
- Chroma values (C_{ij}) of a pixel were increased or decreased by ΔC_{rel}

$$(C_{re/ij}'=C_{ijrel}+\Delta C_{ijrel})$$

CH (C- transform)

- ΔC_{rel} was computed by a Bézier spline function if the hue of the pixel was in a given hue interval
- The value of ΔC_{rel} depended on the value of $C_{\text{ii.rel}}$
 - a relative chroma related to the maximum displayable chroma (C_{max,ij}) for
 - J_{ij} and h_{ij} .

- The input parameter of the CH algorithm was c_1
- c₁ stands for the overall magnitude of △C
 - this is the height of control point *P*2.

CH (C- transform)

- Idea of ΔC_{rel} :
 - nearly achromatic colors were given their original values (no chroma change)
 - pixels with higher C_{ij} values were boosted
 - but carefully in order not to generate outof-gamut colors

CH (C- transform)

- CH applies different amounts of chroma enhancement in each segment of the hue categories (in each hue interval)
- From red, orange, yellow, green, cyan, blue, purple, skin, sky, grass and foliage, only the following hue ranges turned out to be significant: red, yellow, green (and thus grass and foliage), blue, as well as skin and sky
- Long term memory colors and focal colors from literature

i=	0 (blue)	1 (green)	2 (red)	3 (skin)	4 (sky)	5 (yellow)
h _{min}	219.21	127.13	344.49	37.58	213.53	72.54
h _{max}	273.18	182.57	37.61	77.58	253.53	127.13

- The white point of an image is set to a desired CCT value using the CIECAM02 Color Appearance Model
- The input parameter is the target white point (W) in Kelvins.
 - From this white point, the CIE1934XYZ tristimulus values were calculated.
 - A gamut compression method is included to avoid those pixels falling off the gamut of the display.

WP (CCT- transform)

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} \xrightarrow{CRT \text{ model}} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \xrightarrow{D65} \begin{bmatrix} J \\ C \\ h \end{bmatrix} \xrightarrow{W} \begin{bmatrix} X \\ Y \\ CIECAM 02 \end{bmatrix} \xrightarrow{I} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} \xrightarrow{CRT \text{ model}} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

Visual experiments on color image preference

- Eight elderly (average age: 69.1) and five young (average age: 25.8) color normal observers (males and females)
- Method of pair comparisons
- Thurstone's method of pair comparison
 - color image preference z-scores
 - meaning of the magnitude of the preference z-scores
 - a low z-score indicates indifference and a high z-score indicates self-confidence

Visual experiments on color image preference

- Presenting pairs selected form the set of original and transformed versions of a set of test images
 - Only one image appeared on the screen and the observer was able to switch between the two images of a pair by pressing a button
 - No time limit was established upon observation
 - The observer was allowed to switch between the two images unlimited times
 - Observers were not instructed on how to determine the preferred image
 - They were allowed to use any criterion they felt appropriate.

Visual experiments on color image preference

- All image processing transforms were designed so that the amplitude or "strength" of their effect was characterized by a single scalar value as a parameter
- Preference z-scores can be depicted as a function of this parameter
- 12 original images of different scenes
 - landscapes, artificial and natural surroundings, faces and indoor photos

Visual experiments on color image preference – general result

- Elderly group: lower z-scores
- Aged observers are inconsequent in their colour image preference judgments than young observers
- The mean z-score of the young was almost twice as much as that of the elderly: 1.400 vs. 0.7884.

Visual experiments on color image preference – WP result

- The z-scores of the images were averaged for the observers, thus, for each image, a mean observer preference curve was established for the different transformed versions of the image
- z as a function of p
- p is the parameters of the transform
- For WP, p=CCT was varied between 3000K and 46000 K
- Solid symbols: elderly, open symbols: young

Visual experiments on color image preference – WP result (example – 1 image only)

Visual experiments on color image preference – WP result – optimum parameter value

Popt was calculated from the preference curve by weighting the investigated parameter values Pi by the corresponding z-scores (mean values for all observers)

The value of *P*opt expresses "optimum preference" in the sense that this computing method takes into account the entire curve as opposed to simply taking the maximum of the curve:

Visual experiments on color image preference – WP result –image content

- Image content had a strong effect for both aged and young observers on the preferred white point
- Lower CCT preference of aged observers

Visual experiments on color image preference – LE result

 For LE, the preference curves were averaged among the test images, p=1: original image

Visual experiments on color image preference – LE result

- Young observers
 - dislike any local lightness contrast enhancement above
 1.33 independent of the image content.
- Aged observers
 - prefer a slight local contrast enhancement depending on the image content
 - If the original image contains many details of high spatial frequencies then aged observers tend to prefer higher local lightness contrast enhancement parameter values.
 - Faces, skin and noise seem to inhibit the preference of contrast enhancement. In the typical skin images neither age group preferred a harsh local contrast enhancement.

Visual experiments on color image preference – TC result

 For TC, the preference curves were averaged among the test images, p=1: original image

Visual experiments on color image preference – TC result

- Young observers
 - prefer a slight positive image enhancement parameter value
- Aged observers
 - prefer a large positive value
 - TC renders dark shades deeper, and highlights lighter
 - dynamic ranges of these regions shrink
 - the image loses fine spatial details in its dark and light regions
 - Young observers: importance of fine details in every tone region
 - Elderly observers: more unconcerned with such fine details and they prefer more global contrast

Visual experiments on color image preference – CH result

- Each of the significant 6 hue ranges (red, green, yellow, blue, skin, and sky) was represented by 7 test images that contained many pixels in the corresponding hue range
- Both observer groups prefer chroma enhancement up to a specific level of chroma
- The C-course of the preference curves depends on the main hue range of the main object depicted (red, yellow, green, blue, skin, or sky) and on the observer's age

CH result (hue dependent chroma enhancement)

200 (200

31

**p.

94.

400

94

- Image enhancement algorithm for young and elderly observers
- Based on the obtained visual colour image preference curves
- Implemented in a computer program written in C++

- orms
- Starting point: the set of image processing transforms (WP, LE, TC, CH)
- The input image is modified so that it will be preferred to the original
- With different constants for aged and for young observers.
- Key points:
 - 1. the maximum of the preference curve (z vs. p) is approximated from an image descriptor computed from the input image
 - 2. the amount of transform is computed to achieve this maximum

- The amount of color image enhancement to achieve the most preferred color image depends on the pictorial content and measurable quantities of the input image itself
- Stochastic dependence suitable to predict the preferred parameters of the image processing transform for any input image to get its preferred output version
 - But for WP, only a very simple model was used
 - transforming the original image to the most preferred white point of the two age groups, 7430 K for elderly observers and 7626 K for young observers.

- For LE, TC, and CH, the following method is introduced:
- (1) A descriptor ζ was defined for the input image. The value of ζ changes as the transform is applied to the input image. The change of the descriptor characterizes the effect of the transform.
- The output value of the descriptor (ζ^{out}) depends on the value of the parameter p and on ζ^{inp}
- This is the descriptor input-output function, example: TC

Descriptor I/O function: $(p, \zeta^{inp}) \rightarrow \zeta^{out}$

"Ideal descriptor" function: $\zeta^{inp \to} \zeta^{opt}$

- (2) From the experimental preference curves, the optimum value of the descriptor ζ^{opt} is calculated for each test image, and this is approximated for all images, as a function of ζ^{inp} , and this is the *ideal descriptor* function.
- The optimum parameter value p^{opt} is calculated to get $\zeta^{out} = \zeta^{opt}$

Example: TC algorithm

- The descriptor ζ_{TC} is the weighted sum of the J-histogram H(J) of the image
- The weights are computed with a 4-deg. polynomial
 - positive at the extremities of the J scale i.e. at the lower and upper fourth of the 0-110 scale
 - negative for mid-tones
 - If the input image contains many pixels in the extremities then the value of the descriptor will be positive but if mid-tones dominate then it will be negative

J-histogram-weighting polynomial to compute ζ^{TC}

TC algorithm

$$\zeta_{TC} = \sum_{0}^{J_{\text{max}}} \overline{H}(J) J_{p}(J) \qquad \overline{H}(J) = \frac{H(J)}{\sum_{0}^{J_{\text{max}}} H(J)}$$

Descriptor I/O function:

$$\zeta_{TC}^{out} = \zeta_{TC}^{out} \left(p, \zeta_{TC}^{inp} \right) = a \left(\frac{p}{100} \right)^2 + b \left(\frac{p}{100} \right) + c$$

$$a = -0.2115 \zeta_{TC}^{inp} - 0.0743$$

$$b = 0.2618$$

$$c = \zeta_{TC}^{inp}$$

"Ideal descriptor" function:

$$\zeta_{TC}^{opt.}(\zeta_{TC}^{inp.}) \cong$$

$$\begin{cases}
0.9267\zeta_{TC}^{inp.} + 0.044 & \text{for the aged} \\
0.909\zeta_{TC}^{inp.} + 0.0027 & \text{for the young}
\end{cases}$$

LE algorithm

$$f(r) = \prod_{f_x^2 + f_y^2 = r^2} \left| \Phi(f_x, f_y) \right| ds$$

$$\zeta_{LE} = \int_{0}^{\infty} rf(r) dr$$

 ζ_{LE} = Dominating spatial frequency of the input image

Descriptor I/O function:

$$\zeta_{LE}^{out}(p) \cong a \ln(p) + b, \quad (a = a(\zeta_{LE}^{inp.}), b = b(\zeta_{LE}^{inp.}))$$

$$a \cong -0.0621(\zeta_{LE}^{inp.})^{2} + 0.885\zeta_{LE}^{inp.} - 1.9868$$

$$b \cong 0.9643\zeta_{LE}^{inp.} + 0.197$$

"Ideal descriptor" function:

$$\zeta_{LE}^{opt.}(\zeta_{LE}^{inp.}) \cong$$

$$\begin{cases}
1.0260\zeta_{LE}^{inp.} + 0.2393 & \text{for the aged} \\
0.9793\zeta_{LE}^{inp.} + 0.4255 & \text{for the young}
\end{cases}$$

CH algorithm

 ζ_{CH} = Mean chroma (in the given hue range) of the image

Descriptor I/O function: $\zeta_{CH,i} = a_i (p_i - 100) + b_i$

$$a_i = 0.0011\zeta_{CH,i}^{inp} + 0.0415$$

$$b_i = 0.8751 \zeta_{CH,i}^{inp} - 3.1302$$

"Ideal descriptor" function:

$$\zeta_{CH,i}^{opt.}(\zeta_{CH,i}^{inp.}) \cong \begin{cases} \alpha_i^{aged} \zeta_{CH,i}^{inp.} + \beta_i^{aged} & \text{for the aged} \\ \alpha_i^{young} \zeta_{CH,i}^{inp.} + \alpha_i^{young} & \text{for the young} \end{cases}$$

CH algorithm

"Ideal descriptor" function coefficients in the different hue ranges:

i=	0 (blue)	1 (green)	2 (red)	3 (skin)	4 (sky)	5 (yellow)
αίΥ	1.05	0.90	1.18	0.68	0.83	0.97
βίΥ	1.73	5.68	-6.87	6.81	6.47	3.90
αίΑ	1.12	0.94	1.02	0.84	0.87	0.95
βίΑ	0.62	4.51	3.36	4.00	3.87	4.04

Verifying the method

- A subsequent series of visual preference experiments
- Is the enhanced image more preferred than the input image?
- What order the transforms (WP, LE, TC, CH) should be applied?
- 4 test images, 4 aged and 4 young subjects and 4 transform combinations

Verification of the method

Virtual Environment and Imaging Technologies

- Both age groups preferred the enhanced images over the originals.
- Aged observers preferred the transformations to be done in the following order: WP, TC, LE, CH.
- Young observers preferred TC, LE, CH, with no white point transform.
 - Studying the interaction of the different transforms concerning colour image preference is currently underway.

Conclusions

- Colour image preference dataset
 - Local contrast, tone curve, hue range dependent chroma enhancement and white point transform
 - Different preference for young and elderly observers
- Image Processing Method
 - Without any reference image
 - The most preferred version of the input image is appoximated from the input image itself

