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Abstract

This paper reviews a new spectral approach to color correction which can be used
e.g. in medical image analysis applications. The proposed method is based on linear
estimation of all spectral components of a color imaging system, consisting of the spec-
tral sensitivity of the sensor, the spectral radiance of the illuminant and the spectral
reflectances of the surfaces within the scene. In particular, constrained principal eigen-
vector and Wiener inverse estimation are used for this estimation A piecewise linear
interpolation step is used to handle non-linearities of the imaging device.

The novelty of the approach lies in the generalization of the image formation model
by dropping the positivity constraint usually imposed by other calibration methods.
Thus, this method can be applied to camera systems with internal color value matrixing.
Experimental results are presented from a data set acquired by a commercial video
endoscopy system for medical imaging.

1 Introduction

Human observers of color images are well trained to implicitly correct various and varying
color phenomena. Some examples of such phenomena are non-uniform illumination, chang-
ing surface characteristics or changing color temperature, e.g. by aging light sources. For
automated image analysis systems to work properly, these adaption capabilities have to be
emulated by suitable algorithms. In this contribution a solution to the problem of global
color temperature changes is presented. We determine the illumination spectrum of a scene
by measuring the color sensor’s response to a standard color target (e.g. IT8.7) combined
with a linear estimation of the spectrum. Calibration of the camera and illumination spec-
trum estimation is based on a constrained principal eigenvector approximation, while spectral
surface reflectivities are determined by Wiener inverse estimation.

The novelty of our approach lies in the generalization of the image formation model
allowing for linear pre-processing inside the camera system. Such transforms would usually
lead to erroneous results with positivity constraint based algorithms such as [12, 2, 1] or a
monochromator based measurement as pointed in [6]. This effect is also confirmed by our
experimental results. In contrast to other authors we explicitly model the so-called matrizing
of the raw sensor’s response inside the camera. Furthermore, most cameras have a non-linear
response which can also be corrected in our framework by piecewise linear interpolation. A
more detailed account of our method can be found in [8].

This paper is organized as follows. First, in Section 2 the linear image formation model will
be introduced. In Section 3, the color correction framework will be described in a top-down
approach starting with an overview of the algorithm supplemented by some details about the



linear estimation methods. The experimental part in Section 4 describes the data acquisition,
camera calibration and spectral estimation procedure. Final results in comparison with other
algorithms are presented and discussed in Section 5. We summarize with a short discussion
in Section 6.

2 Image Formation Model

Image formation is usually modeled as a linear process where the sensor response p*) € R
for the k’th spectral band is the result of the integration of spectral radiance of a light source
E(\) with wavelength A, the spectral reflectivity of the surface sq(A) at some scene point
w € R? and the sensor’s sensitivities R*)()\). The absolute magnitude of the linear sensor
response for a pixel € R? for matte Lambertian surfaces is determined by the scalar product
between the emitting light source vector e(w) and the surface normal vector n(w) together
with the integration time ti:

o9 (@) = tre(w)n (w) / RO E(N)s(w, N\ + n(z) 1)

Most often the dark current n(x) is already corrected for in modern camera systems. As-
suming controlled illumination conditions, camera integration time and geometry-dependent
terms will be dropped for the further analysis. Formulated in matrix notation (with matrix
sizes in subscript M x N format, i.e. M rows and N columns), the discretized version of this
model can be written as

Prsi = (Rixi) Erxisia (2)

for K spectral bands and L discrete samples with the sensor sensitivity matrix R, the diagonal
illumination matrix E and the surface reflectivity vector s. To account for the internal
processing common to modern digital cameras, a K x K camera matrix M ¢ will be introduced
into the modified image formation model, formulated in vector form as

plx) = Mctle(w)n(w)[\RO(A)E(A)s(w,A)dA (3)

with the K-vector of sensor responses p and the raw sensor sensitivity as K-vector Ro(\).
For numerical solution the discrete image formation model (2) will be used, with the effective
sensor sensitivity matrix R = R, M ¢, the diagonal illumination matrix £ and the L-element
surface reflectance vector s.

3 Spectral Color Correction

Spectral color correction (SPC) is a color constancy mapping which makes use of a fully
calibrated sensor as well as estimates of illuminant and surface reflectance spectra. Sensor
responses are related by (2) assuming that the surface reflectance L-vector s is unchanging
in

pU:(RU)TEUSépC:(RC)TECS ) (4)
Superscripts U denote uncalibrated factors, while the superscripts C describe canonical fac-
tors. Based on these relationships the surface reflectance s has to be recovered from the
sensor response pV, the sensor characteristic RV, and the illumination spectrum EV. In
many practical applications only the illuminant spectra EV differ, while the camera response
remains unchanged, i.e. RV = RC.
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Figure 1: Spectral color correction scheme providing color constancy for medical applications based
on a linear image formation model and linear estimators. The model explicitly assumes cameras
with non-linear post-processing and linear color correction matrix. Scenes can be rendered with
arbitrary sensor characteristics and any assumed illumination. Sensor calibration and computation
of the linearization function has to be done once for each camera device.

First, an overview of the SPC algorithm is depicted in Figure 1 which will be further
explained in the following sections of this text. The image formation process starts in the
bottom section of the sketch where the color signals F(\)s(A), consisting of the reflected
incident illumination () by the surface with reflectivity s(\), are captured by the camera.
The non-linear response p results from the linear raw sensor sensitivity R.(A) and some
generally unknown camera post-processing which is often a color correction matrix M ¢
correcting for filter insufficiencies and a non-linear gamma correction. Non-linearities of
the camera system are captured by a linearization function F(-) converting the non-linear
response p to an ideal linear response

(5)
by radiometric calibration [3].

The sensor calibration delivers an estimate R()\) of the effective sensor sensitivity curves
of the camera including any color correction matrix M ¢ which might be present in the cam-
era hardware. This estimation requires the acquisition of a color reference target with known
reflectivities s,(\) for n = [0; N — 1] color patches under known measurement illumination
conditions denoted by EM()) (Section 3.1). To correct a series of images, an estimate of the
unknown illumination EUY()\) can be derived from the sensor estimate R()\) and color refer-
ences p,, with corresponding measured surface reflectivities s,,(\) (Section 3.2). Note that
these m = [0; M — 1] color patches can be totally different from the ones used for the sensor
calibration. With estimates available for the sensor R(\) and for the unknown illumination
EY()\), the actual surface spectrum §(\) for each color pixel p of the in vivo images can
be derived (Section 3.3). The canonical rendering is the straight-forward application of the
discrete image formation model (2) with a canonical sensor model R°(\) and illumination
EC()) which could be one of the CIE standard daylight illuminations, e.g. D65. If the origi-
nal imaging device characteristic is required, the inverse linearization function F~'(-) can be
applied leading to the illumination and gamma corrected ﬁc.



3.1 Color Calibration of the Camera System

Color calibration of a camera system will be understood as the estimation of the effective
spectral sensitivity of the complete system including lenses, color filters and the CCD sensor.
All these are part of an internal processing chain within the camera, yielding the acquired
digital image. Therefore, calibration results may certainly differ from the results of a mere
color filter measurement which does not include any possible color processing in the camera
system. To estimate the discrete sensor characteristic R, /N reference sensor responses p,, are
acquired from a color calibration target (e.g. IT8.7). The corresponding spectral reflectances
s, with L discrete samples will be arranged into a L x N matrix S. The illumination
charateristics EE have to be measured with a spectro-radiometer. With modifications, the
constrained principal eigenvector approach can be applied to solve the inverse problem as
derived in [9]. Without loss of generality the sensor responses p,, for K = 3 filters will be
arranged into a column vector of NK elements

T
'U:(pR,l PG PB1 PRN PGN PB,N) (6)

and the products of the corresponding surface reflectances in matrix S with the measurement
illumination spectrum F into a matrix

o B Spi 0 0 0 0
0 0 ES, ErSi, 0 0
0 0 0 0 Elsm ELSLJ
CNgxkL = : : : : : : - (7)
ErSix E Six 0 0 0 0
0 0 ESiy EiSix 0 0
0 0 0 0 ESiy ELSpx

Arranging the sensor sensitivities into a column vector r with KL elements, the image
formation expression (2) can be reformulated as

v=Cr (8)

which allows a formulation of the regularized inversion. Regularization is achieved by ap-
plying additional constraints to the well-known principal eigenvector approach [3] similar to
[9]. First, the illumination and surface matrix C' is decomposed by a singular value decom-
position C = UX V', The principal eigenvector approach is implemented using a diagonal
matrix P = [P;]; j=1.., where the first  diagonal elements P;; = 1 for ¢ = j, and the rest of
the matrix contains 0 everywhere else. The parameter r will be called the rank parameter.
Further regularization of (8) is achieved by defining a L x L constraint matrix D which is
applied to each of the K filters by D:

1 =1 0 0 - v 0
o1 —21 21 —01 0 8 D0 0

- 0 D 0

D= , D= . | . (9)
0 0 -1 2 -1 0 - R
0 0 -1 2 -1 0 0 D




As in [9], this matrix needs to be slightly modified to avoid singularity of the solution by
defining dy » = 0 and dy ;1 = 0, yielding D’. With these preparations the sensor response
follows from the regularized estimation

re = (VPZ*VT + uD)"'VPIU v (10)

with p controlling the amount of the regularization. The estimated sensor matrix R is
constructed by re-arranging the stacked representation from the column vector 7.

3.2 Estimation of Illumination Spectrum

To recover the illumination spectrum, knowledge of the sensor characteristic R and a distinct
number of M reference sensor responses p,, with their corresponding reflectances s,,, arranged
into a L x M matrix S are required. Therefore, an image of a calibration target (e.g.
IT8.7) under the same illumination conditions is required to extract reference sensor responses
P..- To solve this tremendeously ill-conditioned system, an adapted constrained principal
eigenvector method and a Wiener inverse approach is described. The products of the target’s
surface reflectances S with the device sensitivities R are combined into a matrix A

Rr1S11  Rr2S21 -+ RriSca
Rg1S1h Rg2S21 -+ RarSrpa
Rp 1511 RpaSei -+ RprSpa
ANgxr = : : : (11)
Rr1Sin RraSoen -+ RrrSpn
Rc1Sin RgaSen -+ RarSow
Rp1Sin RpaSaon -+ RerSiwn

Writing the illumination spectrum as a vector ey y; the discrete image formation expression
(2) can be formulated as v = Ae. The arrangement of the sensor responses in a column
vector is v identical to (6), which allows formulation of the regularized inversion as well.

Regularization is also based on singular value decomposition of the sensor and surface
matrix A = UXV7 and a rank restriction up to r eigenvectors. The condition of the
smoothing matrix D will be enhanced as suggested in [4] by adding an identity matrix scaled
by a coefficient v. An estimate for the illumination spectrum can be determined from

éc = (VPEVT 4 uD +vI)'VPIU (12)

with p, v and r controlling the regularization. Should there be any negative values in the
estimate eq, clipping can be applied.

3.3 Estimation of Surface Reflectivity Spectrum

Clearly, the estimation of surface reflectivity spectra with e.g. L = 31 sample points (repre-
senting the visible wavelength domain from 400 to 700 nm with intervals of AA = 10 nm) from
the image acquisition parameters R, E and the sensor responses p from only K = 3 channels
is underdetermined. From the image formation model (2) we derive the simplified notation
Prx1 = BrxrSpx1 with an illumination and sensor matrix Bixz = (Rrxx)? Epxr. This
matrix has maximal rank K = 3 for standard video cameras with RGB filters. Therefore, the
rank limitation used in the constrained principal eigenvector approach is not helpful here.
This leaves the option of using the Wiener inverse estimate suggested by Pratt et al. [10].



The Wiener inverse method requires an estimate of the correlation matrix R,,. If a
representative set of N surface spectra is available, it can be used to build the correlation
matrix by Ry, = SST with S being a L x N matrix holding N column vectors of surface
spectra. The first-order Markov covariance matriz IA%SS = [p'i*j|]i7j:1._,; can be a useful
replacement, if no such references are available [10]. Finally, the Wiener estimate of the
surface spectrum is defined as

3w = R,,B"(BR,,B") 'p . (13)

Negative values in the resulting reflectivety sy which are due to minor numerical instabilities
will be clipped.

4 Experimental Evaluation

In this section we will present an experimental evaluation of our approach using a data set
of medical endoscopic images.

4.1 Data Acquisition

Before any measurements were taken, the automatic gain control (AGC) of the endoscopy
system was deactivated and a manual white-balance was conducted on the video processor.
Measurements of the light source characteristics were performed using a spectroradiome-
ter (Jeti specbos 1100%). Correction of the sensor’s non-linearity was conducted with the
gray-level patches at the bottom of an IT8.7 color reference target by piecewise logarithmic
regression as described in [3, 8].

From the 288 color patches on the I'T8.7 target the 40 most significant ones were chosen
by iteratively adding those spectra with maximal linear independency [3]. The number 40
was chosen as a compromise between accuracy and economy in experimental effort because
each patch had to be recorded separately for maximally uniform illumination and to provide
enough pixels for averaging the measured sensor response. The first 20 patches are denoted
as the reconstruction set SBr while the following 20 patches represent the verification set By .
The reconstruction set Pr was used to estimate the sensor model and calculate un-biased
quality measures with the verification set Py to verify the generalization capabilities of the
sensor model.

The reference image with the Olympus GIF-Q160Z gastroscope was acquired in a dark
room. With the two light fiber bundles on both sides of the optical channel at the tip of
the endoscope an approximate 45/0 geometry was obtained as proposed by the CIE. From
the center of the acquired images with the gastroscope in full zoom mode, a 256 x 256 pixel
region of interest was selected, excluding the specular highlights caused by the light fibers.
To ensure the validity of the linear image formation model care was taken to avoid clipping
of sensor values.

4.2 Sensor Sensitivity Calibration

To find applicable parameters for the estimation methods, three quality measures were used.
These are the root mean square error (RMSE) €,, the L2 error measure in the normalized
chromaticity space 5, and the normalized cross-correlation (NCC) ¢, between ideal and

3JETI Technische Instrumente GmbH, D-07745 Jena, http://www.jeti.com
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Figure 2: (a) Linear estimate of sensor sensitivities R of Olympus Evis Exera system obtained by
a reference image of an IT8.7 color target and a measurement of the illumination spectrum with
tx = 0.00001 and r, = 20. (b) shows the estimate of the quadratic programming approach [2].

measured response p' and pM. Averaged results of reconstruction and verification data set
are denoted by g,, 5, and ¢,, respectively.

The estimation of the sensor sensitivities R*)()\) is based on the linearized sensor re-
sponses of the reconstruction set PBgr, the known reflectance data of the color reference target
and the measured spectrum of the light source. For these measurements the estimation pa-
rameters have been optimized with respect to the error measures mentioned above. It should
be noted that an estimation based on the back-projection error is biased because it has a
strong tendency to optimize for the measurement data but not for the real sensor sensitiv-
ities. Therefore, the distinct verification set Py was evaluated as an ojective control. Best
results in terms of normalized error with €; = 0.061 were achieved with a regularization of
s = 0.00001 (see Figure 2(a)).

These results were also compared with the quadratic programming approach by Finlayson
et al. [2] which enforces positivity and needs to be parameterized by the number of modes, a
weaker form of the so-called uni-modality constraint. For the present data set this resulted in
high absolute and chromaticity errors (£, = 10.37, €, = 0.086), see Figure 2(b). However, as
already mentioned these constraints cannot be applied when a color correction matrix is built
into the camera system which explains the unsatisfactory results. As mentioned in Section 2,
the negative sensitivities displayed in Figure 2(a) can be explained by a matrix M ¢ within
the camera system.

4.3 Illumination and Surface Reflectivity Estimation

The presented approach to color correction is based on measurements of the sensor’s responses
to multiple color patches on a color reference target. With measured spectral reflectivities
of these patches and the known sensor model R, an estimate of the spectral distribution
of the illumination can be obtained. Results will be presented for the constrained principal
eigenvector method, which will be compared with the spectroradiometer measurement and
evaluated with the back-projection error in device RGB space.

With not much variation in the results when varying the parameters, a correlation to the
illumination measurement of cg = 0.99 could be obtained (Figure 3(a)).

Estimating a surface spectrum from the sensor’s tristimulus values is a difficult problem
to solve, as can be seen from Sect. 3.2. There exist a lot of different results and opinions in
literature on how many color filters are needed for an optimal multispectral image acquisition.
These values range between K = {3,5,7} and up to K = 16, depending on the applications
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Figure 3: (a) Estimate of illumination spectrum from reconstruction set with p, = 0.00001, r, = 3,
v, = 0.1 compared with reference measurement. (b) Estimate of surface spectrum of a green color
patch (J18) from the reconstruction set with Wiener inverse method (p = 0.99).

and environments at hand [3]. In the present experiments, the image acquisition devices were
standard digital video endoscopy systems with K = 3 color filters as a fixed limitation of the
system. However, for the correction of endoscopic or dermatoscopic imagery, it was shown by
principal component analysis, that three principal components are enough to represent 99%
of the examined mucousal and skin spectra [7]. Therefore, one can conclude that it should be
possible to approximate the surface spectrum well enough for color correction in the device
RGB space. The Wiener inverse method was evaluated with a trained correlation matrix
R,, = SST and the first-order Markov covariance matrix Ifiss with different settings for the
correlation parameter p. Figure 3(b) shows the estimated surface spectrum compared with
the reference measurement for a green color patch (J18) from the reconstruction set.

5 Results

To validate the SPC' approach in comparison with other methods, color correction was per-
formed on the verification data set ‘By. Furthermore, the absolute root mean square error ¢,
and the normalized chromaticity error ¢; were computed. All transformations were based on
the sensor responses of the reconstruction set Pr as well as simulated sensor responses for
the canonical illumination and color space derived from the spectral surface reflectivities of
the same color patches. Therefore, the XYZcg color space and simulated daylight spectra
for different correlated color temperatures (CCT), computed according to [15], were used.
Reference for comparison are von Kries adaption by scaling each color band independently,
using a 3 x 3, and a 3 x 10 transformation matrix, respectively. All these transformations
were found by linear regression between the sensor responses from the reconstruction set and
the simulated canonical sensor responses. The 3 x 10 matrix includes quadratic terms within
and between color channels similar to [3]. To be fair against these references, linearized
measurements were used.

All error measures €, and ¢; between the transformed linearized measurements and the
ideal canonical sensor responses have been compiled into Table 1. Each row represents a
different canonical illuminant computed from the CIE daylights for CCT in the range 4000 K
to 7000 K. The first column (,None“) show the errors for uncorrected RGB, the second
column (SPC-PE-Ma) contains results for the SPC algorithm with constrained principal
eigenvector estimate for the sensor sensitivities as depicted in Figure 2(a). Further results
were added with the sensor estimates of the quadratic programming algorithm [2] (SPC-QP-



Table 1: Experimental comparison of spectral color correction algorithm. The first column
(,None“) shows the errors for uncorrected RGB, the next two columns contain results for the
spectral color correction algorithm with constrained principal eigenvector estimate (SPC-PE-Ma)
and quadratic programming (SPC-QP-Ma). The last three columns contain results for von Kries
adaption, 3 x 3 and 3 x 10 transformation matrices.

None SPC-PE-Ma | SPC-QP-Ma von Kries Regr. 3 x3 | Regr. 3 x 10
CCT [K] €p €5 €p €5 €p €p €p €p €p £5 €p €5
4000 | 19.63 0.116 | 3.02 0.039 | 4.83 0.047 9.11 0.086 | 3.05 0.038 | 3.08 0.038
4500 | 17.34  0.093 | 3.19 0.040 | 5.46 0.049 9.54 0.085 | 3.29  0.038 | 3.39 0.038
5000 | 15.96 0.081 | 3.37 0.040 | 6.06 0.050 9.94 0.084 | 3.51 0.038 | 3.67 0.038
5500 | 15.42 0.079 | 3.54 0.040 | 6.59 0.050 | 10.30 0.084 | 3.71  0.038 | 3.91 0.038
6000 15.51 0.083 | 3.70 0.040 | 7.07 0.051 10.62  0.084 | 3.88 0.039 | 4.12 0.038
6500 | 15.97 0.091 | 3.84 0.040 | 7.47 0.051 | 10.91 0.084 | 4.03 0.039 | 4.29 0.038
7000 | 16.60 0.100 | 3.97 0.040 | 7.83 0.051 | 11.16 0.084 | 4.16  0.039 | 4.44 0.039

Ma), displayed in Figure 2(b). In both cases, the Wiener inverse with Markov covariance
matrix and p = 0.99 was applied. As predicted by the evaluation in Section 4, the errors are
consistently higher than for the linear estimate.

Color correction performance of von Kries adaption exposed strong weaknesses in the
present experiments with significantly higher errors. Regression with a 3 x 3 transforma-
tion performed comparably to the presented approach with similar errors £; in normalized
chromaticity space, but higher absolute errors €,. The 3 x 10 transformation with quadratic
terms performed a little worse than the 3 x 3 matrix and the spectral approach. This may
have to do with instabilities or over-adaption due to the relatively sparse number of data
points used for computation of the 30-element transformation matrix.

6 Discussion

The integrative spectral color correction framework presented in this work is able to estimate
the illumination conditions of a scene from measurements of a color rendition chart and
reproduces images under canonical conditions. The initial calibration of the system covers
estimation of a linearization function and the sensor sensitivities from a reference color target
under known illumination conditions.

The novelty of this approach lies in the generalization of the image formation model,
allowing for linear pre-processing inside the camera system. Such transforms would lead
to erroneous results with positivity constraint based algorithms or a monochromator based
measurement. Compared with the works of [13, 7], where filter wheel cameras are used,
this algorithm has to work with standard commercially available color cameras with a fixed
number of filters and 8-bit resolution. This requires a linearization function so that the linear
estimators can work.

The results presented in Section 5 also confirm the idea of not imposing a positivity con-
straint on such camera systems used in digital endoscopy systems. Compared with von Kries
adaption, a clear advantage in terms of reproduction quality could be measured. Improve-
ments were not as strong as compared to linear and polynomial regression based methods,
but consistently noticable over the whole range of considered illuminants. Another advan-
tage of the modular structure of the present approach is that each module can be optimized
separately and even be exchanged, e.g. by non-linear spectrum estimators such as the ones
presented in [5, 11, 14].
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