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Abstract Spatial resolution for color is poor, and reports that V1 simple cell respond
to oriented achromatic stimuli have led to the view of two independent processing
streams, a high-resolution achromatic form system and a low-resolution unoriented
color surface system. Recent data have challenged this view, showing that V1 sim-
ple cells respond also to oriented chromatic stimuli [5, 7] and that color is processed
both in the dorsal and ventral stream [2]. Here we analyze the statistical distribution of
luminance and chromatic edges in natural scenes. We show that few edges are char-
acterized exclusively by luminance or chromatic information alone. Instead, the vast
majority of edges combine luminance and chromatic information, supporting recent
physiological findings of the joint processing of chromatic and luminance information.
While few edge are characterized by a pure chromatic contrast, these edge are impor-
tant for particular ecologically relevant tasks such as the detection of ripe fruit against
foliage. Overall, we suggest that chromatic information makes edge detection more
robust and provides important additional information for the proper segmentation of
objects.

The detection of edges is frequently one of the first processing steps both in artificial and
natural systems. Traditionally, this process is conceptualized in neurophysiological theo-
ries and computationally realized in image processing systems as an achromatic process.
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Fig. 1: Image of a fruit and the edges detected in the luminance plane and the L-M plane which
signals reddish-greenish variations. While the object contour is faintly if at all represented by the
luminance edges, a strong response occurs in the L-M plane which almost perfectly delineates the
object. Chromatic information helps to separate objects from background.

However, important information about object boundaries is sometimes represented only
in chromatic channels. Consider the image of a red fruit on green foliage (Fig. 1): In the
luminance image, the edges of the fruit are hardly detectable, because the luminance of



the fruit is almost the same as the luminance of the background foliage. Any image pro-
cessing system which tries to detect objects based on luminance information alone would
probably miss the fruit. Adding chromatic information changes the situation completely. In
the L-M channel, which represents reddish-greenish signal variations, the object bound-
aries of the fruit is almost perfectly represented. An image processing system which can
use this chromatic information will probably detect the fruit.

It has been suggested that the ability to process chromatic information and red-green vari-
ation in particular has evolved for precisely this task, namely to detect ripe fruit against a
background of green foliage [1,14]. More recently, it has been shown that the spectral sen-
sitivities of photo pigments in primates are optimal for the detection of finding fruit or young
tasty leaves among a background of mature leaves [16,17]. Here we investigate the more
general hypothesis that the advantage of having access to chromatic information is not
limited to the detection of fruits and leaves, but instead applies to any objects which have
a different color than the background. By combining luminance information with chromatic
information the detection of objects becomes easier and more robust. However, this would
only make sense if many object borders are defined by a combination of luminance and
chromatic contrast. A parsimonious system may still rely on luminance information alone,
but taking chromatic information into account would make the detection more robust and
reliable. In the following we focus on edge detection, since edge detection is one of the
first processing step in object recognition, both in artificial and natural vision system.

In particular, we investigate the statistics of luminance and chromatic edges in natural
scenes to asses the possible contributions of chromatic information to edge detection. In
particular, one wants to know whether all information about edges is essentially contained
in the achromatic version of the image, or, alternatively, if and what kind of information
can only be obtained form the chromatic channels. The ideas is as follows: A full chro-
matic images is first separated into a pure luminance image plane and two chromatic
images, one varying between reddish-greenish, the other between purple-chartreuse. In
this step it is important that the achromatic images are isoluminant, i.e, that they contain
no luminance differences. Clearly, a simple difference of RGB channels cannot achieve
this property. Instead, one has to use a color space where luminance and chromatic in-
formation is properly separated. Here we use the DKL color space [3, 10] whose three
cardinal axes (achromatic luminance; reddish-greenish or L-M; and purple-chartreuse or
S-(L+M)) are derived from the peak sensitivities of neurons in the LGN, i.e, at the second
major processing stage after the initial absorption by the three cone classes. After this
transformation, edges are detected in each of the three images planes. Next, the edges
within, say, the reddish-greenish image plane are compared to the edges in the achromatic
images: for every images pixels we evaluate the strength of the edge in the achromatic
image and strength of the corresponding pixel in the reddish-greenish plane. The joint
histogram of the edge strength in two images is a formalization of this idea.

The joint histograms show that few edges are characterized exclusively by luminance or
chromatic information alone. Instead, the vast majority of edges combine luminance and
chromatic information. A joint processing of luminance and chromatic information, as
supported by recent physiological findings, will thus result in more robust and reliable
edge detection and object recognition. Chromatic signals provide a general advantage,
which is not limited to special tasks such as the detection of ripe red fruits against green
foliage. Chromatic information makes edge detection more robust and provides important
additional information for the proper segmentation of objects.



Results

The two joint histograms of luminance edges and edges detected in each of the two chro-
matic channels are depicted in Fig. 2.
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Fig. 2: Joint edge histogram of the luminance channel (L+M) with the L-M channel (reddish-
greenish signal variations) and the S-(L+M) channel (purple-chartreuse signal variations).



The joint histogram of luminance and L-M edges has a high excursion along the luminance
axis and also strong isoluminant L-M edges. Isoluminant edges are not rare, but occur
with equal strengths as other edges. However, the large majority of edges do not fall
on either axes but is combines luminance and chromatic contrast. The distribution is not
symmetrical but has a higher excursion along the second diagonal, which results from
many edges between bright green and dark reddish objects, such as leaves in full sunlight
against soil or shadow.

A similar joint histogram occurs for the luminance and S-(L+M) edges, with less pro-
nounced isoluminant edges. Again, the distribution is not symmetrical but has a higher
excursion along the main diagonal. Again, bright greenish objects cause this higher excur-
sion, this time leading to stronger edges between bright greenish and dark bluish objects
than between dark greenish and bright bluish objects.

Inspection of edge maps in individual images reveals that some prominent object bound-
aries are weak or missing in the luminance edge map but are clearly delineated in the L-M
plane. For example, red fruits or flowers against green foliage, that are hardly visible in
the luminance plane, give rise to strong object boundaries in the L-M plane (cf. Fig. 1).

Having evaluated the joint occurrence of chromatic and luminance edges, we have also in-
vestigated the co-occurrence of edges in the two chromatic channels. The joint histogram
for chromatic L-M and S-(L+M) edges is almost circular (Fig. 3).
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Fig. 3: Joint edge histogram of the two chromatic channels.

The largest edge contrast occurs near the second diagonal between green and magenta.
Edge contrast along the main diagonal which roughly corresponds to edges between yel-
low and blue objects is smallest. The reason for that is unclear but may reflect particular



properties of natural scenes, where few highly saturated blue objects on yellow back-
ground (or vice versa) are to be found, while highly saturated reddish-magenta objects
on highly saturated green background (such as a flower or fruit among leaves) are more
frequent.

For comparison to the joint edge histograms, we have also determined the joint histograms
between individual cone excitations [15]. The data show that the cone excitations are
highly correlated, because changes in light intensity will results in similar changes of cone
excitations. Also, the correlation is highest between L and M cones because of their highly
overlapping spectrum.
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Fig. 4: Joint histograms of cone responses are highly correlated.

Discussion

Colors are only symbols. Reality is to be found in luminance alone.
When | run out of blue, | use red.

Picasso

In an anecdotal report, when asked about the meaning of his pink and blue periods, Pi-
casso made the above statement. This statement perfectly reflects the traditional view
which used to be common among scientists both in computer vision and physiology.

In physiology, the process of edge extraction was thought to be essentially achromatic.
In this traditional, simplistic view, edges are processed by orientation-selective neurons
driven by a pure luminance pathway, whereas the processing of color was thought to be
limited to unoriented neurons [11]. Recent neurophysiological recordings have shown that
this strict dichotomy is inadequate: orientation-selective neurons sensitive to a combina-
tion of color and luminance exists in the primary and secondary visual cortex [7-9]. In a
recent study the sensitivity of neurons both in primary visual cortex (V1) and secondary
visual cortex (V2) to color and orientation has been measured [5]. Color and orientation
selectivity was quantified by an index ranging between 0 and 1. If orientation selective cells
were basically color-blind, and color selective cells were not selective for orientation, both
indices would show a strong negative correlation. However, a continuous, uncorrelated
distribution of color and orientation selectivity was found (Fig. 5).

In computer vision, edge detection algorithms were mostly designed for the processing of
achromatic images. However, despite tremendous effort, the multi-purpose edge detector
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Fig. 5: Neurons in V1 and V2 are sensitive for color and orientation. Color and orientation are not
correlated, but define independent dimensions.

which faithfully detects the relevant edges in an image has not been found yet. This failure
may point to the importance of other visual modalities apart from luminance that play an
important role in edge detection. Our results suggest that color is one modality which
makes edge detection more robust.

We have presented further evidence for the joint processing of luminance and color from
the statistical analysis of the distribution of chromatic and luminance edges in natural
scenes. Object boundaries are not always characterized by pure luminance variations. In-
stead, most edges are characterized by a co-occurrence of chromatic and luminance con-
trast. Further, some prominent object boundaries are signaled robustly only in the chro-
matic L-M plane. Chromatic edges are also robust against luminance variations caused by
+cast shadows. Overall, this suggests an important role for color in the detection of object
boundaries. The neural networks in early visual areas seems to be perfectly adapted to
the joint occurrence of luminance and chromatic edges in natural scenes.

Methods

The analysis is based on 764 images from a publically available data base of calibrated
color images [12]. The calibrated images are first transformed into LMS cone space, mod-
eling responses of the L, M and S cones of a human observer. Next, LMS responses are
transformed into a color-opponent space, with three axes sensitive to luminance (black-
white), L-M (“reddish-greenish” or “cherry-teal”) and S-(L+M) (“purple-chartreuse”), re-
sembling the chromatic preferences of retinal ganglion cells and LGN cells.



Formally, the following transformations of the L, M and S cone excitations are used [6, 13]

Lum=L+M+¢ (1
IM = (L—M)./Lum ()
SmLM = (S — Lum)./(S + Lum) . 3)

The parameter € = 272 is a small constant which is added to avoid division by zero in the
computation of LM and SmLM.

Edges are detected in these three color-opponent planes using the Sobel operator, after
normalizing each plane to the range [0, 1]. Finally, the joint histogram of edges strengths
is computed for each image, and the joint histograms of all images are averaged. In a joint
histogram, the value at position i, j is the number of pixels with value i in one channel and
value j at the same location in the other channel. The joint histogram is an approximation
of the joint probability density of pairs of edge pixels at same locations in different color
planes.

For comparison to the joint edge histograms, we have also computed the joint histograms
of the LMS cone excitations which provide the input to the further processing. Following
an earlier study [15], the joint histograms are computed from a logarithmic transformation
of the cone excitations. More precisely, each of the three cone excitations L, M, and S is
converted to a logarithmic signal (base 10), and the mean is subtracted:

Liog = logL —mean(logL) 4)
Myog = logM — mean(logM) ®)
Siog = log S — mean(log ) (6)

The rationale for this transformation is as follows. The logarithmic transformation com-
pensates for the large variations in the cone excitations, which, without the logarithmic
transformation, leads to squeezing of many data points at the origin and a long-tailed
extension at higher values. Further, the classical Weber-Fechner law states that same
logarithmic changes in stimulus intensity are equally detectable [4, 18]. Subtracting the
mean, responses are independent of the overall illumination level. The transformation
of individual cone responses is analogous to von Kries scaling, where individual cone
classes are normalized independently.
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