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Abstract

This paper presents an algorithm for interest point detection based on symmetry
features. Interest points are used in computer vision to represent salient image areas
which have an increased likelihood to be relevant for further processing. In contrast to
most other works, the approach presented here uses color as a form feature on equal
footing with intensity. Thus it is possible to detect symmetric structures even in the
presence of low contrast and on inhomogeneous background. The application of interest
points is described in the context of object recognition and image retrieval.

1 Introduction

The detection of interest points (IPs) is a key component in many image processing archi-
tectures, e.g. for object recognition, image retrieval, or active vision [17, 1|. The role of IPs
in image processing is to direct the “attention” of the system to the areas which are most
relevant for further processing. It is usually argued that restricting processing to a limited
number of image areas is for the sake of computational efficiency, but it should be noted that
the pre-selection of certain patterns is also part of the pattern recognition process itself.

While segmentation techniques (e.g. [11, 3]) partition an image into regions which are
well-defined by their borders, an IP represents a “salient” image area A only by a single
point. But A is not a precisely defined region in the sense that a border can be given such
that the image is salient inside the border and not salient on the outside. The size and
shape of the salient area A heavily depends on the IP-algorithm, for a discussion on this
problem see [7]. This difference between segmentation and IP algorithms is due to their
functional principles: Segmentation searches for homogeneity of features such as color or
texture, whereas IP algorithms look for structures such as edges or corners.

So far, practically all TP-algorithms exploit gray values only. The reason for this re-
striction is that IPs are found from form features (e.g. [15]), and form features are widely
believed to be detectable only from intensity variation. This assumption roots in early find-
ings on biological vision, where shape is supposed to be perceived from intensity, whereas
color information is added to shapes in later processing stages (e.g. [9]).

But experience as well as recent analysis of the second order statistics of color imagery
has shown that color is a promising form feature [8], though spatio-chromaticity is still
rarely used in technical vision. This paper presents an [P-detector which exploits the spatial
distribution of color and gray values alike. It is based on the well known symmetry detector
proposed by Reisfeld et al. [12]. But while the old approach has problems in detecting
symmetries in the presence of low contrast, the new algorithm can exploit color differences.



Organization of the paper: In the following section 2, first the original gray value based
approach will be described, then the extension to color and the choice of color spaces. Sec-
tion 3 describes two complementary applications: For the recognition of pre-defined objects
or parts of objects, IPs are used in a “one IP — one object” fashion (section 3.1), whereas the
characterization of images from unknown domains for retrieval purposes requires multiple
IPs (section 3.2). The final section 4 gives a short summary and outlook.

2 Color based IP detection

The techniques considered in this paper are context-free, i.e. independent of a particular
image domain and not goal specific (i.e. specialized to localizing pre-defined objects). There
are numerous approaches to context-free IP detection. Most are aimed at finding edges and
/ or corners, the most well known is the detector of Harris and Stephens [4]. By contrast,
Reisfeld et al. have proposed an algorithm which yields IPs in the middle of symmetric
regions. This algorithm will be addressed as GRAY-SYM. GRAY-SYM yields a saliency
map, for an example see the upper left picture in Fig. 1, where bright spots indicate high
symmetry in the original (upper right). However, GRAY-SYM often fails to detect symmetry
in the presence of low contrast, as visible in the second upper right picture, where the markers
are the IPs obtained as the maxima of the saliency map. The algorithm and the reasons
for its failures are discussed in the following section 2.1. In section 2.2 the generalization to
color (COL-SYM) will be outlined.

2.1 The GRAY-SYM algorithm

The GRAY-SYM algorithm used here as a basis for COL-SYM is almost identical to the
algorithm proposed by Reisfeld et al. [12] with minor modifications for computational ef-
ficiency. GRAY-SYM calculates a continuous valued symmetry judgment for each point of
the image. Let the image be given by its gray values I(p) where p denotes a pixel at location

(z,y). The gradient of I(p) is denoted by (I,(p) = aggf),fy(p) = ag—(f), from which the gra-

dient magnitude G;(p) = \/Ix(p)2 + I,(p)? and direction 6;(p) = arctan (I,(p)/I.(p)) can
be calculated.

A set I'(p) of index pairs (3, j) of pixel pairs (p;, p;) which surround the central pixel p is
defined as I'(p) = {(¢,7) | (pi +p;)/2 =p}. The symmetry map Me,qy(p) is a sum over all
pixel pairs that surround p:

Meray(p) = > PWFgay(i,j) - GWF(i,j) - DWF,(i, j). (1)

(4,5)€l(p)

The functions PW Fpay, GWF and DW F,, evaluate how strong a pixel pair (p;,p;) con-
tributes to symmetry. Here, the Phase Weight Function PW Fgq, is a measure for the
probability that gradient directions at p; and p; belong to a symmetric object:

PW Feray(i,7) = (1 —cos(v; +7;)) - (1 —cos(yi —75)) - (2)

7i,7; denote the angle between the local gradients at p; and p;, respectively, and the line
pip; connecting p; and p;. If «;; denotes the angle between p;p; and the horizon, then
Vi = 0; —auj, v = 05 — cu;. PW Fgpe, takes high values if the gradients at p;, and p; are
directed such that they belong to the contours of an object which is symmetric around the
central point p = (p; + p;)/2. For a detailed discussion on PW Fq, see [12, 6].



The second factor in Eq. 1 is the Gradient Weight Function GW F which weights the
contribution of pixels (p;, p;) higher when both of them are located on edges:

GWFE(i,j) = log(1+Gi(p:) - log(1+ Gi(p;))- (3)

The idea is that edges are likely to be borders of an object and thus more relevant for

symmetry detection. The logarithm attenuates the influence of very strong edges. In the

implementation used here, computational efficiency is improved by evaluating only pixel

pairs p;, p; where both pixels are located on a sufficiently strong edge, as proposed in [10].
The third factor in Eq. 1 is the Distance Weight Function DWF,:

. 1 pi — pill®
DWFU(Z,j> = ﬁexp <—||20_2J||> . (4)

The parameter o defines the scale on which symmetries are detected. Since the only effect of
DWF is a slight smoothing of the saliency map Mgqy, it will be left out in the implemen-
tation used here. To maintain the locality of the symmetry measure, the summation of the
pixel pairs defined by I' is now restricted to pairs with ||p; — p;|| < 2R, where the parameter
R > 0 will be called the “symmetry radius”. In other words, the new version of I is

P(p) ={67) | i +pj)/2=p N lpi —pill <2R}. (5)

This modification has no major effect since the purpose of DWF, is to make the measure
local, i.e. contributions of pixel pairs further away than ~ 3¢ from the central pixel p become
very small. The same can be achieved by a circular mask of radius R. Apart from that,
DW Fy leads to a slight smoothing of M, which is achieved in the current implementation
by convolution with a Gaussian kernel after computation. After the convolution, IPs are
detected as the highest maxima.

2.2 The COL-SYM algorithm
2.2.1 Motivation
The GRAY-SYM detector suffers from two problems:

1. In the presence of low contrast, symmetric shapes are often difficult to detect (Fig. 1).

2. The Phase Weight Function PW Fy.q, is 2m-periodic in the gradient directions. There-
fore gradients from dark to bright and gradients from bright to dark have opposite
signs, which makes it impossible to detect, e.g., a symmetric gray object on dark
background to its left and bright background to its right.

The color based symmetry detector (COL-SYM) introduced in [6] overcomes both shortcom-
ings by operating equally on all three channels. As COL-SYM is an extension of GRAY-SYM,
it is also based on gradients. The problem that arises with color is that the extension of the
gray value gradient to color is a tensor, which can not be easily used for symmetry detection.
Therefore, gradients are still computed for the isolated color channels, but symmetry is de-
tected by an across-channel evaluation. In the course of this scheme, a novel phase weight
function is introduced which also solves the afore mentioned problem of GRAY-SYM for the
single channel case.



Figure 1: Comparison of the detectors GRAY-SYM and COL-SYM. Upper left: Saliency
map of GRAY-SYM. Upper right: IPs obtained as maxima from this saliency map. Lower
left: Saliency map of COL-SYM. Lower right: IPs for COL-SYM. COL-SYM catches far
more of the symmetries in low contrast areas by exploitation of color (e.g. colored pearls).
In addition, the new phase weight function leads to higher and easier to detect maxima in

the saliency map. For example, the eyes are visible in both saliency maps, but to weak to
be detected with a reasonably high threshold for GRAY-SYM.



2.2.2 Description of the algorithm

Let the color image be given by color values I;(p), where i = 0,1,2 denotes the red, green
and blue channel. Further, let G;(p) and 6;(p) denote the gradient magnitude and gradient
direction for each channel. The saliency map M¢y(p) is defined as follows:

MCol(p) = Z Z PWFCol(iaj7k7 l) : GWFCol(i7j> kvl)a (6)
(5,5)€l(p)  (k1)EA(p;ij)

The main difference to Mgyqy(p) is the additional summation over all significant color edge
pairs, i.e. edge pairs red-red, red-green etc.

To be more precise, the set A(p, 1, j) is the set of pairs of color indices (k,1), k,l € [0, 2],
for which the gradients exceed predefined thresholds 9y, U;:

A(p,i,j):{(k},l) | k7l€{07172} A Gk(pl) Zﬁk A Gl(pj) Zﬁl} (7)

In the across-channel summation over A(p,i,j), color channels have to be treated equally.
For example, the contribution of a red-green edge must be equal to the contribution of a
green-red edge. Therefore, the 2m-periodic phase weight function PW Fgyq, (Eq. (2)) must
be replaced by

PWEca(i, j, k1) = [COSQ(%’k + ’le)} : [COSQ(%’k) : COSz(’le)} ; (8)

where 7, denotes the angle between gradient Gy (p;) and the line p;p;. Note both factors are
m-periodic, so PW Fg is invariant to transformations vy — vi + 7 (i.e. PW Foo(Vik, V1) =
PW Feo(Yie + m,v51) = PW Foo(Yik, Vit + ) = PW Foq(Yie + 7, v + 7).

The gradient weight function GW F¢,; is analogous to its gray value version:

GW Feo (i, 3, k, 1) = log(1+ Gi(p;)) - log(1+ Gi(p;)). (9)

The resulting map Mg, is slightly smoothed before IPs are detected as the N highest
maxima (Fig. 1). As for GRAY-SYM, COL-SYM has only one main parameter: the sym-
metry radius R, which selects the scale on which symmetries are evaluated and thus the size
of structures or objects that may be represented by an IP. The parameters v, are of minor
importance to the results but decisive for computational efficiency, as they define the edge
strength required for processing. Usually, 94 is chosen equal for all channels in the RGB
case.

2.2.3 Color spaces

The above description of COL-SYM was for three channels, but it can easily be generalized
to n channels. For example, multispectral images can be processed.

While there is a lot of discussion on color spaces for image processing, experience with
applications (as outlined in the next section) shows that the choice of a suitable color space
is entirely application specific. For the problem shown in Fig. 2, the RGB-space is well suited
due to the colors of the objects of interest. But then, in this setting constant illumination is
provided. For tasks where illumination is subject to change, more robust or invariant color
spaces are to be preferred.

Choosing a color space appropriately of a specific task is feasible only for restricted, fixed
domains, e.g., if the set of objects is small and a priori known, and / or the illumination
is fixed. But for applications such as image retrieval, where a huge variety of images must
be dealt with, there is little reason to prefer one color space over the other since they yield
different sets of IPs. In this case, the parallel use of several color spaces may be sensible, as
discussed below.



3 Applications

The idea of using IPs in an image processing architecture is to filter out relevant image areas.
Therefore the role of IPs is twofold: (i) Computational efficiency is achieved by leaving out
irrelevant areas, and (#7) pattern recognition is facilitated by the pre-selection of a certain
type of patterns (here: symmetric patterns). But due to the relatively simple and close-to-
signal nature of [P-algorithms, the power of this filtering process is limited. An IP-detector
does no more than providing a set of areas that have an increased probability of being
relevant by showing a particular pattern type. Most IP-detectors provide also a measure
for this probability, i.e. the “goodness” of an IP. In the case of the symmetry detectors,
the height of the maximum in the symmetry map is a good indicator. In an IP-based
architecture, a suitable threshold for the required goodness must be found as a trade-off
between maximizing true positives (IPs that are where they should be) and minimizing false
positives (IPs in places without sufficient symmetry).

3.1 Object and component recognition

For object recognition tasks, IPs have to localize the objects of interest. GRAY-SYM or
COL-SYM make sense only when the objects are symmetric, but once there are objects with
other prominent features, also other types of IP-detectors have to be applied. If necessary,
several [P-detectors can be used in parallel as described in the next section.

Figure 2: Application of the IP-detector: Symmetric areas are selected and subsequently
classified by an object recognition system with categories such as “bolt head” or “hole of
a bar”. Note that the IP selection is part of the pattern recognition as it restricts possible
categories to symmetric objects.

Fig. 2 shows a pile of Baufix-objects. Baufix is a set of wooden toy pieces that can be
connected by bolts. In this case, not only the objects are symmetric, but they bear also
several symmetric components such as holes or the symmetric heads of bolts. Therefore, a
component-based scheme was developed for recognition rather than a classifier for isolated
objects. By this means, the objects can be recognized even under strong occlusion (e.g. as



parts of aggregates), because it is likely that at least some components of the object remain
visible.

Further processing is restricted to square windows centered at the IPs, the rest of the
image is now ignored. The windows are classified into categories such as “bolt head”, “hole
of a bar” or “no known category” by a neural classifier, so the result is a collection of labeled
IPs. The next step is to derive an object classification from the classified components and to
associate the appropriate image regions. This medium-level processing step is performed by
a knowledge based approach [13] which integrates geometrical knowledge about the objects
with the information obtained from the low-level.

Summarizing, the role of IPs in object recognition is to provide a set of candidate windows
centered at relevant objects or components. These are to be classified and “assembled” by
further processing levels, in particular, windows containing unknown or irrelevant structures
have to be sorted out. The idea was explained here for a system of toy pieces, another
application related to object recognition is in the context of an augmented reality system,
where object knowledge is taught online using a mobile interface [2].

3.2 Image retrieval

The use of IPs in content based image retrieval (CBIR) is different from object recognition.
This is caused by the fact that the majority of CBIR systems is aimed at global retrieval:
A set of query images is given by the user, for which the CBIR system returns the most
similar images of a database. Similarity is measured by features extracted globally from
the query images and the returned images. “Global” does not necessarily imply that the
complete image is evaluated — there may be a selection of relevant areas by segmentation or
[P-techniques — but the user does not specify which parts of the image are relevant. For this
reason, IP-based CBIR systems usually employ the windows selected by the IP-algorithm
for a characterization of the complete image, examples are [14, 17]. An overview of CBIR
can be found in [16].

In contrast to global retrieval, an entirely local CBIR system was proposed in [5]. In this
system, for both the query image and the images of the database IPs are computed using
several detectors in parallel, including COL-SYM (the older system described in [5] still uses
GRAY-SYM, but here the updated version is described). A query is defined by selecting IP-
centered windows from the query images, the remainder of the images is completely ignored.
Retrieval is performed by comparing the query windows to windows found in the database
by the IP-detectors. By this means, the search is restricted to the objects the user wants to
find, i.e., if e.g. a yellow flower is selected, then only images with yellow flowers are to be
returned, regardless of any background. The principle of work is illustrated in Fig. 3.

Locality of the search and restriction to user-defined windows makes the retrieval task
somewhat similar to object recognition. Again, the role of IPs is not only to achieve compu-
tational efficiency, but also pattern recognition. For CBIR, IPs define the image components
that can be searched for. This is a restriction compared to global approaches, which allow
to search for arbitrary patterns, at least in principle. But the restriction to IPs forces the
user to specify only patterns that can actually be represented and searched for, which leads
to a higher success rate. In case the detected IPs prove to be an insufficient representation,
IP detectors covering a greater variety of (color—) features have to be integrated.



Figure 3: IPs for a retrieval task. First row: In the query image, several IPs have been
found, some on the relevant object, some on background (left). The user selects the relevant
IPs and the appropriate window size (right). Second row: The search is for windows similar
to the specified ones such windows are shown in the left image. The right image shows the
complete version of the left.

4 Conclusion

An IP-detector based on symmetry computation was presented which differs from earlier
work by the exploitation of color as a form feature. To date there are surprisingly few works
on the use of spatio-chromaticity in image processing, which is anachronistic considering
the availability of even low cost color cameras. The work presented here is restricted to
close-to-signal features, since IPs are a low level concept. But there is no apparent reason
why spatio-chromaticity should not be used for higher processing stages also. Therefore, the
current work on IPs is merely a first step towards architectures that rely equally on intensity
and color on all processing levels.
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