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Abstract. In this paper the problem of nonparametric impulsive noise removal
in multichannel images is addressed. The proposed filter class is based on the
nonparametric estimation of the density probability function in a sliding filter
window. The obtained results show good noise removal capabilities and excellent
structure preserving properties of the new impulsive noise reduction technique.

1 Introduction

The majority of the nonlinear, multichannel filters are based on the ordering of vectors
in a sliding filter window. The output of these filters is defined as the lowest ranked
vector according to a specific vector ordering technique.

Let the color images be represented in the commonly used RGB color space and let
x1, x2, . . ., xN be N samples from the sliding filter window W . Each of the xi is an m-
dimensional multichannel vector, (in our case m = 3). The goal of the vector ordering
is to arrange the set of N vectors {x1,x2, . . . ,xN} belonging to W using some sorting
criterion.

In [1, 2] the ordering based on the cumulative distance function R(xi) has been pro-
posed: R(xi) =

∑N
j=1 ρ(xi,xj), where ρ(xi,xj) is a function of the distance among

xi and xj . The ordering of the scalar quantities according to R(xi) generates the or-
dered set of vectors. The most commonly used measure to quantify distance between

two multichannel signals is the Minkowski norm ργ(xi,xj) = [
∑m

k=1 |xik − xjk |γ ]
1/γ .

The Minkowski metric includes the city-block distance (γ = 1), Euclidean distance
(γ = 2) and chess-board distance (γ = ∞) as the special cases.

One of the most important noise reduction filter is the vector median. In the case of
gray scale images, given a set W containing N samples, the median of the set is defined
as x(1) ∈ W such that

∑

j

∣

∣x(1) − xj

∣

∣ <
∑

j
|xi − xj | , ∀ xi, xj ∈ W. (1)

Median filters exhibit good noise reduction capabilities, (especially when long tailed
distribution noise is involved) and outperform simple nonadaptive linear filters in pre-
serving signal discontinuities. As in many applications the signal is multidimensional,
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in [3] the Vector Median Filter (VMF) was introduced, by generalizing the definition
(1) using a suitable vector norm. Given a set W of N vectors, the vector median of the
set is defined as x(1) ∈ W satisfying

∑

j

∥

∥

x(1) − xj

∥

∥ <
∑

j
‖xi − xj‖ , ∀ xi,xj ∈ W . (2)

The orientation difference between two vectors can also be used as their distance mea-
sure. This so-called vector angle criterion is used by the Vector Directional Filters
(VDF), to remove vectors with atypical directions, [4]. The Basic Vector Directional
Filter (BVDF) is a ranked-order, nonlinear filter which parallelizes the VMF oper-
ation. However, a distance criterion based on the angles between vectors is utilized.
To improve the efficiency of the directional filters, another method called Directional-
Distance Filter (DDF) was proposed. This filter retains the structure of the BVDF, but
utilizes the combined distance criterions to order the vectors inside the processing win-
dow, [4, 5].

2 Nonparametric Estimation

Applying statistical pattern recognition techniques requires the estimation of the prob-
ability density function of the data samples. Nonparametric techniques do not assume
a particular form of the density function since the underlying density of the real data
rarely fits common density models.

Nonparametric Density Estimation is based on placing a kernel function on every
sample and on the summation of the values of all kernel function values at each point in
the sample space, [6]. The nonparametric approach to estimating multichannel densities
can be introduced by assuming that the color space occupied by the multichannel image
pixels is divided into m-dimensional hypercubes. If hN is the length of an edge of a
hypercube, then its volume is given by VN = hm

N . If we are interested in estimating the
number of pixels falling in the hypercube of volume VN , then we can define the window
function φ(xi) = 1, if |xij | ≤ 1/2, j = 1, . . . , m and 0 otherwise, which defines a unit
hypercube centered in the origin.

The function φ (‖x − xi‖ /hN) is equal to unity if the pixel xi falls within the hy-
percube VN centered at x and is zero otherwise. The number of pixels in the hypercube
with the length of edges equal to hN is then kN =

∑N
i=1 φ (‖x − xi‖/hN) and the

estimate of the probability that a sample x is within the hypercube is pN = kN/NVN ,
which gives

pN(x) = (NVN )−1
∑N

i=1
φ (‖x− xi‖/hN). (3)

This estimate can be generalized by using a smooth kernel function K in place of φ(·)
and the width parameter hN satisfying: K(x) = K(−x), K(x) ≥ 0,

∫

K(x) dx = 1
and limN→∞ hN = 0, limN→∞ hm

N = ∞.
The multivariate estimator in the m-dimensional case is defined as

p∗N(x) =
1

N

N
∑

i=1

1

h1 . . . hq
K
( |x1 − xi1|

h1
, · · · ,

|xq − xiq |
hm

)

, (4)
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with K denoting a multidimensional kernel function K : R
m → R, h1, . . . , hm denot-

ing bandwidths for each dimension and N being the number of samples in W . A com-
mon approach to build multidimensional kernel functions is to use a product kernel
K(u1, . . . , um) =

∏m
i=1 K(ui), where K is a one-dimensional kernel function

p∗N (x) =
1

N

N
∑

i=1

m
∏

j=1

( |xij − xj |
hi

)

. (5)

The shape of the approximated density function depends heavily on the bandwidth cho-
sen for the density estimation. Small values of h lead to spiky density estimates showing
spurious features. On the other hand, too big values of h produce over-smoothed esti-
mates that hide structural features.

If we chose the Gaussian kernel, then the density estimate of the unknown proba-
bility density function at x is obtained as a sum of kernels placed at each sample xi

pN (x, h) =
1

N
(

h
√

2π
)m

N
∑

i=1

exp

(

−‖x − xi‖2

2h2

)

. (6)

The smoothing parameter h depends on the local density estimate of the sample data.
The form of the data dependent smoothing parameter is of great importance for the
non-parametric estimator.

Choosing the Gaussian kernel function for K, the optimal bandwidth is

h∗ = (4/(m + 2))−
1

m+4 σ̂ N− 1
m+4 , (7)

where σ denotes the approximation of the standard deviation of the samples. In one
dimensional case (7) reduces to the well known, ’rule of thumb’, h∗ = 1.06N−1

5 σ̂, [6].
A version which is more robust against outliers in the sample set can be constructed if
the interquartile range is used as a measure of spread instead of the variance. This mod-
ified estimator is h∗ = 0.79%N−1

5 σ̂, where % is the inter-quartile range. Another robust
estimate of the optimal bandwidth is h∗ = 0.9AN− 1

5 σ̂ with A = min (σ̂, %/1.34).
Generally the simplified rule of choosing the optimal bandwidth h can be written as

h∗
1 = C σ̂ N− 1

m+4 , (8)

where C is an appropriate weighting coefficient.
From the maximum likelihood principle and assuming independence of the sam-

ples, one can write the likelihood of drawing the complete dataset as the product of the
densities of one sample

L(h) =

N
∏

j=1

pN (xj , h) =

N
∏

j=1

1

N

N
∑

i=1

1
(

h
√

2π
)m exp

(

−‖xj − xi‖2

2h2

)

. (9)

As this likelihood function has a global maximum for h=0, in [7] a modified approach
has been proposed

L∗(h) =





N
∏

j=1

1

N

N
∑

i=1, i6=j

1
(

h
√

2π
)m exp

(

−‖xj − xi‖2

2h2

)





1
m

. (10)
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This function has one maximum for h, which can be found by setting to 0 the derivative
of the logarithm of L∗(h) with respect to h. A crude but rather fast way to obtain an
approximate solution hereof is by assuming that the density estimate of Eq. (5) on a
certain location x in the feature space is determined by the nearest kernel only, [7]. In
this paper we use the optimal h derived from (10) defined as

h∗
2 = C

(

(mN)−1
∑N

j=1
‖x̃j − xj‖2

)
1
2

, (11)

where x̃i represents the nearest neighbor of the sample xi, and C is a tuning parameter.

3 Proposed Algorithm
Let us assume a filtering window W containing N image pixels, {x1, . . . , xN} and let
us define the similarity function µ : [0;∞) → R which is non-ascending and convex
in [0;∞) and satisfies µ(0) = 1, µ(∞) = 0 . The similarity between two pixels of
the same intensity should be 1, and the similarity between pixels with minimal and
maximal gray scale values should be very close to 0. The function µ(xi, xj) defined as
µ(xi, xj) = exp{−[(xi − xj)/h]2}, where h is the bandwidth of the Gaussian kernel,
defined by (8) or (11), satisfies the required conditions.

Let us additionally define the cumulated sum M of similarities between a given
pixel and all other pixels belonging to window W . For the central pixel x1 we introduce
M1 and for the neighbors of x1 we define Mk as

M1 =
N
∑

j=2

µ(x1, xj), Mk =
N
∑

j=2, j 6=k

µ(xk, xj), k > 1, (12)

which means that for xk, which are neighbors of x1, we do not take into account the
similarity between xk and x1, which is the main idea of this algorithm. The omission
of the similarity µ(xk, x1) when calculating Mk, privileges the central pixel, as in the
calculation of M1 we have N − 1 similarities µ(x1, xk), k > 2 and for Mk, k > 1
we have only N − 2 similarity values, as the central pixel x1 is excluded from the
calculation of Mk, [8, 9].

In the construction of the new filter, the reference pixel x1 in the window W is
replaced by one of its neighbors if M1 < Mk, k = 2, . . . , N . If this is the case, then
x1 is replaced by that xk∗ for which k∗ = arg maxMk, k = 2, . . . , N . In other words
x1 is detected as being corrupted if M1 < Mk, k = 2, . . . , N and is replaced by its
neighbors xk which maximizes the sum of similarities M between all the pixels from
W excluding the central pixel.

The basic assumption is that a new pixel must be taken from the window W , (in-
troducing pixels, that do not occur in the image is prohibited like in the VMF). For this
purpose µ must be convex, which means that in order to find a maximum of the sum
of similarity functions M it is sufficient to calculate the values of M only in points
x1, x2, . . . , xN .

The presented approach can be applied in a straightforward way to multichannel
images using the similarity function defined as µ(xi,xj) = exp{−[‖xi − xj‖/h]2},
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where ‖ · ‖ denotes the specific vector norm and h denotes the bandwidth. Now in
exactly the same way we can maximize the total similarity function M for the vector
case.

a) b)

c) d)

Fig. 1. Impulsive noise removal technique in the 2D case.

The working scheme of the new filter is presented in Fig.1 for the two-dimensional
data. Fig. 1 a) depicts the arrangement of pixels in W and Fig. b) their nonparametric
probability density estimation. Figs. c) and d) present the density plots for the cases
when the central pixels xA and xB are removed from W . It can be seen that in the first
case c) the pixel x1 = xA will be retained and in the second case d) the pixel x1 = xB

will be replaced by xA. The pixel xA will be preserved, as in Fig. c) the plot attains
its maximum at xC , but this maximum is less than the maximum for xA in Fig. b).
Regarding sample xB , its rejection causes that the maximum is attained at xA and this
pixel will replace the central pixel xB .

4 Results
The performance of the proposed impulsive noise reduction filters was evaluated using
the widely used PSNR quality measure. Figure 2a) shows the dependence of the noise
attenuation capability of the proposed filter class on the bandwidth type h∗1 and h∗

2

defined by (8) and (11). Clearly the filter based on the h∗2 outperforms the technique
based on the h1 bandwidth for the whole range of used contamination probabilities p,
(p = 0.01 - 0.1).

Figure 2b) presents the dependence of the PSNR restoration quality measure on the
kind of the Minkowski norm. Surprisingly, the L∞ norm yields significantly better re-
sults than the L1 or L2 norms. This is the result of the construction of the h∗

2 bandwidth,
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which depends on the nearest neighbor in the sliding filter window. This behavior is ad-
vantageous, as the calculation of the L∞ norm is much faster than the evaluation of
distances determined by L1, L2 norms.

The efficiency of the filters based on adaptive h∗1 and h∗
2 bandwidths are dependent,

(especially for very small noise contamination) on the coefficient C in (8) and (11).
Figure 2c) shows the dependence of PSNR for the filter based on h∗2 as a function of
C in (11). For low noise intensity the parameter C should be significantly larger than
for the case of images corrupted by heavy noise process. However, setting C to 4 is
an acceptable trade-off, as can be seen in Fig. 2 d), which depicts the efficiency of
the proposed filter in comparison with VMF, AMF and BVDF. It can be observed that
although the C = 4 is not an optimal setting for the whole range of tested noise in-
tensities, nevertheless the described filter yields much better results than the traditional
techniques.

This is also testified by Fig. 3, which compares the filtering results obtained by
the filter based on adaptive h∗2 bandwidth with the performance of the reference VMF,
BVDF, DDF filter. As can be observed the new filtering has much better detail preserv-
ing properties than VMF, BVDF and DDF.

5 Conclusions
In this paper a new nonparametric technique of impulsive noise removal in multichan-
nel images has been proposed. The described filter class is based on the estimation of
the kernel bandwidth using the technique proposed in [7]. The experiments revealed,
that the proposed algorithm yields the best results when applying the L∞ norm, which
makes the filter computationally very attractive. The obtained results show that the pro-
posed technique excels significantly over the standard techniques like VMF, BVDF and
DDF. The future work will focus on the automatic adjustment of the tuning parameter
C in (8) and (11).
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(1) (2)

a1) b1)

c1) d1)

e1) f1)

a2) b2)

c2) d2)

e2) f2)

Fig. 3. Illustrative example of the efficiency of the proposed algorithm: a) zoomed parts of the
test color images, b) image corrupted by 3% of impulsive noise, c) image after filtering with the
proposed filter, d) VMF output, e) DDF output, f) BVDF output.


