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Abstract. Dyed barley cells in microscope colour images of biological experi-
ments are analysed for the occurrence of haustoria of the powdery mildew fungus
by a fully automated screening system. The region of interest in the images is
found by applying Canny’s edge detector to the hue channel of the HSV colour
space. For the segmentation of potential haustoria within the dyed cells, two dif-
ferent methods are considered: A clustering in RGB colour space using the Ex-
pectation Maximisation (EM) algorithm, and morphological contrast enhance-
ment of the colour image with subsequent hysteresis thresholding in the satura-
tion channel of the enhanced images. The second approach seems to be more
viable because of its robustness and more promising results.

1 Introduction

Automating the screening and the analysis of biological experiments is a challenging
research area in the field of bioinformatics and engineering. This paper is related to
a project studying resistance mechanisms of crop plants against the powdery mildew
fungus from the genetical point of view. In the experiments, young barley leaves are
bombarded with DNA-coated particles to “switch on or off” desired genes in cells.
For analysis purposes, an additional reporter gene1 is expressed in cells that were hit
by a particle. This dyes the affected genetically transformed cells greenish blue and
allows their identification by bright field microscopy [7]. The task is to evaluate the
susceptibility of the genetically transformed cells to the powdery mildew fungus under
the impact of different test genes. A successful penetration of the fungus into the cell
is indicated by the development of a haustorium – a dark object consisting of a “waist”
with “fingers” that is located between the cell wall and the cell membrane and feeds
the fungus by leaching the cell (see Figure 2). These objects have to be counted in an
automatic analysis procedure.

Since there are many genes to be considered for a potential resistance of the plant
against pathogens, a big number of experiments has to be performed to obtain a suffi-
cient statistical confidence. Therefore, an automated image acquisition system and an

1 β-glucuronidase (GUS) reporter gene
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automatic analysis procedure is needed. Manual screening is a tedious, subjective and
time-consuming task that cannot be handled by laboratory assistants due to that huge
amount of data. For an automatic image acquisition, the microscope slides are mounted
on an x-y table which scans a number of preparations fully automatically under the
control of a computer, e.g., overnight. Now, finding genetically transformed cells and
therein assessing the development status of the haustoria without human interaction is
the task and the challenge of the analysis procedure.

This paper deals with the problem of segmenting the scarcely outstanding haustoria
from the remaining cell tissue. It is organised as follows: Section 2 introduces the prop-
erties of the image material and explains how the regions of interest, i.e., genetically
transformed cells, are found in the images. Afterwards, Section 3 reviews the Expecta-
tion Maximisation (EM) clustering technique and presents its results on two examples.
Section 4 describes a segmentation technique based on thresholding in the saturation
channel after morphological contrast enhancement of the colour image and shows its
results on four examples, before Section 5 concludes the paper.

2 Preprocessing of the image material

Figure 2 shows two typical cutouts of microscope images, both containing one dyed
genetically transformed cell with two haustoria of the powdery mildew fungus inside.
By default, the microscope camera produces images of 2600 × 2060 pixel in 24-bit
colour.

In [3] we have shown that these dyed cells can be reliably detected by applying
Canny’s edge detector [1] to the hue channel of the HSV colour space. It is advan-
tageous to cut out the cells exactly at its edges first before processing the images by
morphological contrast enhancement. This prevents potential distortions from regions
outside the cell during operations with large neighborhood-masks. Since Canny’s edge
detector produces either smooth and closed edges at the expense of a significant spa-
tial uncertainty or rather disrupted but certainly positioned edge elements at fine scales,
an edge linking procedure across multiple scales is considered in tradeoff to get both
a closed as well as correctly located cell boundary. For the EM approach, this step
is omitted and the rectangular region of interest, containing a dyed cell, is processed
directly.

3 Clustering in RGB using the EM algorithm

The Expectation Maximisation (EM) algorithm [2, 6] solves the general problem of
classifying a number of N d-dimensional data vectors xn ∈ IRd×1 from the entire
data set X ∈ IRd×N into K classes. Therefore, a parametric model for the class dis-
tributions is chosen whose initial parameters are adapted in an iterative procedure. A
popular, powerful and simple model is the multivariate Gaussian distribution, whose
equal-probability surfaces describe (hyper)ellipsoids in the d-dimensional space. The
center of an ellipsoid is given by the mean vector µ, whereas its shape and orientation
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is described by the covariance matrix Σ.
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Using this model, the EM algorithm is run in the following manner: The probability (at
iteration step t) of each data vector xn to belong to class k is calculated (expectation
step) by

P t(k|xn) =
P t(k) p(xn|µ

t
k,Σt

k)
K∑

j=1

P t(j) p(xn|µt
j ,Σ

t
j)

. (2)

A new parameter set for the iteration step t + 1 containing the prior probabilities, mean
vectors and covariance matrices for each class is calculated according to (maximisation
step)

P t+1(k) =
1

N

N∑

n=1

P t(k|xn) (3)

µ
t+1
k =

1

NP t+1(k)

N∑

n=1

P t(k|xn) xn (4)

Σ
t+1
k =

1

NP t+1(k)

N∑

n=1

P t(k|xn) (xn − µ
t+1
k ) (xn − µ

t+1
k )T . (5)

The algorithm is terminated at some stopping criterion, e.g., when the resulting labelling
of the data vectors does not change anymore.

We examined this method in [4] and argued that a direct approach of this technique
is not feasible even in case of a very good initialisation parameters. Therefore, a modi-
fied approach was introduced: Only data samples that were assigned reliably to a class
are iterated on. This prevents the EM algorithm from deviating too much from its ini-
tial parameter set and segments potential haustoria regions quite well. Figure 3 shows
the segmentation results using this constrained version of the EM algorithm. The pixel-
labels are depicted in a soft-output manner, i.e., the vector of the posterior probabilities
[P (k = 3|x), P (k = 2|x), P (k = 1|x)]T is assigned to the RGB value of each pixel,
making the saturation of the colour follow the reliability of the estimate.

Nevertheless, we have been looking for less fragile methods providing better seg-
mentation results, since there are some interferences in the outputs so far.

4 Morphological contrast enhancement

In addition to other applications like texture description, gradient calculation, etc., the
powerful techniques of mathematical morphology [8] can be used to gain a significant
contrast enhancement of images. This is basically done by adding enhanced bright
features to the original image I while subtracting enhanced dark features

κ(I) = I + WTHB(I)
︸ ︷︷ ︸

enhanced bright
features

−BTHB(I)
︸ ︷︷ ︸

enhanced dark
features

. (6)
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Both, the enhanced bright and dark features are extracted by the morphological top-hat
operations

white top-hat (opening top-hat) WTHB(I) = I − γB(I) (7)

black top-hat (closing top-hat) BTHB(I) = φB(I) − I , (8)

respectively, using the morphological opening γB and closing φB . In turn, the opening
γB(I) = δB [εB(I)] and closing φB(I) = εB [δB(I)] are based on the fundamental
morphological operations dilation δB and erosion εB , using the structuring element B.
Its shape and size has to be chosen according to the available knowledge about the
structures to be filtered. Advantageously, morphological top-hats operate contrary –
they extract structures that cannot contain the structuring element. Therefore, a simple
rectangular or quadratic structuring element, being a little bit larger than the “waist"of
a haustorium, is a good choice to enhance the haustoria as the wanted structures.

The theory of mathematical morphology is well established for grayscale images,
though the question arises how to deal with colour images. Developing a theory of
mathematical morphology for colour images, the step from a scalar-valued function to
a vector-valued function needs the definition of a supremum and infimum for vectors
instead of scalars, which in turn requires the definition of an order relationship of mul-
tivariate samples, making the development of a general theory on “colour-morphology”
difficult [5]. Nevertheless, as a straightforward extension to grayscale morphology, a
component-wise approach could be deployed which processes each vector component
independently. This approach is chosen in the sequel, where the RGB components are
treated as independent grayscale images.

The considerable effect of this contrast enhancement method is depicted in Figure 4.
In these examples, a (flat) quadratic structuring element of size 31× 31 pixel was used.
While the hue is almost unaffected (this is not shown here), the effect is most expressed
in the saturation channel (see the miscoloured images). The saturation of the green-
ish blue cell tissue stays almost unchanged whereas the saturation of the haustoria is
boosted in such a manner that it absolutely reaches its maximum value in some regions
of each haustorium.

4.1 Thresholding

This effect is exploited by a hysteresis thresholding technique: Since each haustorium
reaches maximum saturation somewhere, this maximum value defines an upper thresh-
old, while a lower threshold as a second parameter needs to be tuned on the data. Ev-
erything above the lower threshold is considered to be a haustorium if it is connected to
a region segmented by the upper threshold.

Of course, the segmentation results strongly depend on the selection of the lower
threshold. As we mentioned above and as can be clearly seen in the miscoloured im-
ages in Figure 4, the saturation of the cell tissue is almost not affected by the contrast
enhancement – but the haustoria regions are. Now, the lower threshold is gained di-
rectly from the data: Consider the set of pixels belonging to maximum saturation level
in the enhanced image. Using this set of pixels, we go back into the saturation chan-
nel of the original image and calculate the mean value of the pixels belonging to the
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set. The result gives the lower threshold. Figure 1 depicts the corresponding probability
density functions of the examples from Figure 4. Note their variability and the different
resulting lower thresholds.
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Fig. 1. Smoothed probability density functions of the saturation channel of the four exemplary
cells of Figure 4. Maximally saturated pixels were excluded for convenience.
– dashed curve: PDF of saturation channel of original image
– solid curve: PDF of saturation channel of contrast enhanced image
– dotted vertical line: lower threshold used in hysteresis thresholding.

5 Conclusions

We applied two different segmentation techniques on microscope colour images of bar-
ley cells for the identification of small objects – so called haustoria – which stand out
scarcely from the cell tissue. As the favorite solution, we propose to enhance the con-
trast of the cell image by morphological processing first and to perform a hysteresis
thresholding in the saturation channel of the enhanced image afterwards. The upper and
lower threshold is gained adaptively directly from the image data.

On the other hand, we presented in comparison a pixel-colour clustering technique
based on the EM algorithm. Despite a good initialisation, this method needs a constrain-
ing mechanism to prevent a defection from the desired segmentation.

After all, the segmentation via morphological contrast enhancement provides rather
good results; Haustoria are segmented properly. Now, a further shape analysis of the
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segmented objects is needed to distinguish haustoria from other segmented objects.
This is currently in progress.
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Fig. 2. Two cutouts of typical microscope colour images: Both transformed (greenish blue
coloured) barley cells contain two haustoria of the powdery mildew fungus. These objects have
to be detected automatically by a high throughput screening system.
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Fig. 3. Segmentation results of the two cells from Figure 2 via EM-clustering in the RGB colour
space into “background” (blue), “cell” (green), and “haustorium” (red).
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Fig. 4. Four examples for haustoria segmentation via morphological contrast enhancement of the
colour image and subsequent thresholding in the saturation channel
(for each of the four examples from from top to bottom):
– cell image as acquired by the microscope camera
– cell image after contrast enhancement
– saturation channel of original cell image
– saturation channel of contrast enhanced image
– object boundaries (from sat. channel of enhanced image) by simple thresholding
– object boundaries (from sat. channel of enhanced image) by hysteresis thresholding.


