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Abstract

The automated analysis and classification of textured regions in color images is an
active field of research in image processing and pattern recognition. However, most of
the published algorithms require ideal imaging conditions with respect to homogenous
illumination conditions or calibrated recording devices. In this work we propose a YUV-
based shading correction technique applicable to color images. Experiments conducted
on images with synthesized shading show feasibility of the approach. Moreover the
application of our algorithm to endoscopic images of the esophagus show significant
gains in classification performance.

1 Introduction

The automated analysis and classification of textured regions in color images is an active
field of research in image processing and pattern recognition. However, most of the pub-
lished algorithms require ideal imaging conditions with respect to homogeneous illumination
conditions or calibrated recording devices. For example, real world applications in industrial
or medical environments have to deal with changing light source characteristics due to aging
and inhomogeneous illumination due to geometry constraints. Publications dealing with the
problem of retrospective shading correction generally consider gray level images only and
do not provide adequate solutions for color images [TLP00, Jäh02, LMVP00]. Furthermore,
no results are available how such pre-processing methods may influence subsequent texture
analysis.

One application example, where illumination correction is needed, is the analysis of high-
resolution color images obtained by magnification video-endoscopes. Such endoscopes are
also used for screening patients with chronic gastroesophageal reflux disease which results
in about 5% of cases to so-called Barrett’s esophagus. This is a pre-malignant epithelium
that builds up in consequence of inappropriate repair of esophageal injury due to chronic
reflux [Fen00]. About one to two percent of the adult population in the United States
are assumed to have Barrett’s esophagus, explaining the large increase of the incidence of
esophageal adenocarcinoma, the Barrett’s associated cancer, in the last thirty years [Fen00].
The distinction between benign tissue of the Cardia and Barrett’s esophagus is a difficult
problem in endoscopy and still requires conventional biopsy with following histology. The
state of the art still is the ”random-biopsy”, taking samples from all four quadrants of the
considered section of the esophagus. A long-term goal of our research is to support the
examiner by an intelligent endoscope which helps in detecting and classifying the tissue in



(a) Corpus tissue (b) Global thresholding (c) Cardia tissue (d) Global thresholding

Figure 1: Endoscopic images show illumination gradient to the right bottom corner which leads to
unacceptable results with a simple global thresholding. Texture features relying at least partially
on absolute intensities will misbehave with such kind of data.

the field of view. Such CAD3 systems are expected to help directing a faster biopsy with
fewer samples and giving an objective ”second opinion”.

2 Gray Level Shading Correction

The problems caused by inhomogenous illumination conditions in automated image analysis
have been a known problem in the image processing community for the last decades. Shading
or intensity inhomogeneities often show slowly decreasing intensity over an image. The
human visual system automatically compensates for this effect, which in contrast is not quite
possible with computer vision systems as depicted in Figure 1 for the case of a simple global
thresholding operation. In the literature the relation between an assumed shading-free image
U(x, y) and the image N(x, y) which is acquired by a real camera has been formulated with
a linear model [TLP00]:

N(x, y) = U(x, y)SM(x, y) + SA(x, y) (1)

The components SM(x, y) and SA(x, y) are image location dependent multiplicative and
additive shading components, respectively, which are generally unknown. In a standardized
image acquisition setting a set of two reference images can usually be used to obtain an
estimate for the shading-free image U(x, y). With a black image B(x, y) accounting for the
dark current of the CCD-chip in the camera and a white image W (x, y) acquired by recording
a homogenous white image below the clipping level of the camera, an estimate Û(x, y) can
be found using [Jäh02]:

Û(x, y) = C
N(x, y)−B(x, y)

W (x, y)−B(x, y)
(2)

However, it can be seen that this approach has its limitations even under a controlled image
acquisition setting as medical endoscopy. This is because object-dependent shading can not
be compensated for with reference image approaches and therefore we require so-called ret-
rospective shading correction methods. By definition these algorithms estimate the shading
components solely by means of the acquired image N(x, y). Assuming that shading is located
in the low frequency domain below the image content of interest, linear and homomorphic fil-
tering techniques can be used. Linear filtering cares only for the additive shading component
SA(x, y) which is estimated by low-pass filtering (LPF) [TLP00]:

ŜA(x, y) = LPF{(N(x, y))} (3)
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Figure 2: Processing in the YUV Smoothing Algorithm. Images are separated into luminance
and chrominance information, luminance is corrected by standard shading correction methods and
afterwards an inverse conversion is performed.

leading to the simple estimate of the shading-free image

Û(x, y) = N(x, y)− ŜA(x, y) + C (4)

where the normalization constant C can be computed as the mean gray level of the shading
estimate C = E{ŜA(x, y)}. Note that multiplicative shading components are neglected in this
approach. This can be handled by homomorphic filtering algorithms which involve low-pass
filtering of the logarithm of images by exploiting the relation

log{N(x, y)} = log{U(x, y)}+ log{SM(x, y)} (5)

in this case neglecting the additive shading component SA(x, y). A similar technique is using
morphological filtering to estimate the shading components. More complex approaches are
trying to fit a shading model applying second order polynomials on some pre-selected points
[TLP00]. A recent paper by Likar et al. [LMVP00] also uses second-order polynomials for
modeling of the shading-components but optimizes the coefficients by minimisation of the
entropy H{Û(x, y)}.

3 Color Shading Correction

However, the described approaches concentrate solely on the use of gray-level images. There-
fore, the question arises, how they can be used on color images which are of increasing concern
in research and development today. A straight-forward extension for color images applies the
gray level linear filtering to every plane of an RGB image independently. This method
shall be refered to as intra-plane smoothing. Due to the combined encoding of intensity and
chromaticity in the RGB image this filtering technique might influence color information in
uncontrolled and undesireable ways.

In the process of color image shading correction it is therefore desirable to correct only
the intensity information. Suitable color spaces to separate chromaticity from intensity in-
formation are the family of HSI4 color models or color difference spaces such as YUV [PV00].
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The YUV color space consists of the luminance channel Y and the chrominance channels U
and V and is linearly related to the device RGB values by a matrix transformY

U
V

 =

 0.299 0.587 0.114
−0.147 −0.289 0.437
0.615 −0.515 0.100

 R
G
B

 (6)

with the respective inverse transform left out for the sake of brevity here. Our correction
algorithm therefore starts with the conversion of the acquired RGB image NRGB(x, y) to its
YUV representation NYUV(x, y) by applying (6):

NRGB(x, y)
YUV−→ NYUV(x, y) (7)

For correction purposes only the intensity channel Y denoted by N
(Y )
YUV(x, y) is used, leading

to the corrected intensity channel of the estimate ÛYUV(x, y) as

Û
(Y )
YUV(x, y) = N

(Y )
YUV(x, y)− LPF{N (Y )

YUV(x, y)}+ C (8)

where C is the mean intensity of the low-pass filtered Y channel. the color difference signals
U and V are taken unchanged from the original image in YUV representation

Û
(U,V )
YUV (x, y) = N

(U,V )
YUV (x, y). (9)

After back-conversion by the inverse transformation of (6)

ÛYUV(x, y)
YUV−1

−→ ÛRGB(x, y) (10)

the corrected estimate ÛRGB(x, y) can be used for further processing. The whole procedure
is shown in Figure 2 and will be called YUV smoothing throughout the rest of the paper.
It is quite obvious that any gray level algorithm might be used for color images in this way
which is just a matter of implementation.

4 Experiments And Results

4.1 Artifical Shadows

The evaluation of the proposed shading correction scheme is performed in two contexts. At
first we show experiments with artificial shadows on a known image where we have known
ground truth about the ideal image U(x, y). Secondly, we work with real color images from
medical endoscopy.

For our experiments with ground truth we use the famous Lena image (see Figure 4(a))
which has been modified by an additive linear shading (see Figure 4(b)). To avoid clipping of
gray levels after adding of the shading components each intensity value was divided by two.

For evaluation purposes we used different filter sizes for the low-pass filter and computed
the root mean square error (RMSE) and the normalized cross correlation (NCC) between the
original image U(x, y) and the corrected estimate Û(x, y) (Table 1). To handle the relatively
large filter sizes for background estimation we used an iterative implementation of a binomial
filter. The reference RMSE and NCC between the original image U(x,y) and the uncorrected
shaded image N(x,y) is 76.2831 and 0.9503, respectively.

It can be seen from this table that the values of the RMSE decrease while the values of
the NCC increase with increasing filter size until they reach a minimum and maximum at a



Table 1: Influcence of filter size on root mean square error (RMSE) and normalized cross correlation
(NCC) for intra-plane and YUV smoothing. The reference RMSE and NCC between the original
image U(x,y) and the uncorrected shaded image N(x,y) is 76.2831 and 0.9503, respectively.

Filter Size RMSE (intra) NCC (intra) RMSE (YUV) NCC (YUV)
31 81.4775 0.9434 81.6647 0.9434
51 78.7138 0.9474 78.9625 0.9474

101 71.5738 0.9572 71.1825 0.9581
151 65.4339 0.9646 65.3125 0.9653
201 62.8902 0.9674 62.1392 0.9687
251 61.6267 0.9686 60.4998 0.9706
301 61.8268 0.9681 60.0480 0.9706
351 63.2623 0.9663 61.4447 0.9688

filter size of 301, respectively. This result is in agreement with expectations as shadows are
assumed to be of low frequency. At its minimum the RMSE is still far from being neglectable
with a value of about 60. This is a matter of applicability of the RMSE to illumination
correction as these algorithms try to distribute the intensity homogenously over the image
via the constant C but do not completely remove it.

What is also visible is that the YUV smoothing performs only slightly better in terms of
these measures for this example. However, this was expected as our simulated shadow was
created by adding a linear ramp to each of the RGB channels.

Figure 4(c) shows the result of applying YUV shading correction with a filter size of
301. The successful elimination of the intensity gradient is visible and emphasized by the
corresponding line profiles shown in Figure 4(d)-4(f). These RGB line profiles are extracted
at the height of the eyes of Lena.

One problem that still remains, is that the absolute intensity level is difficult to recover
in such experiments. As every image acquisition inherently depends on the amount of light
in the scene we consider it an acceptable rule to distribute the intensity by a constant offset
C in the scene, see equ. (8).

4.2 Inhomogenous Endoscopic Images

Inhomogeneous illumination is an inherent problem in medical endoscopy. In our case we
used a flexible zoom-endoscope with a CCD-chip at the distal end (Olympus GIF Q160Z, see
Figure 3(a)). It allows imaging with up to 115× optical magnification with a depth of view
between 1.5mm and 3.0mm. However, the two light sources beneath and above the camera
window lead to an inhomogeneous lighting in the field of view (see details in Figure 3(b)).

We evaluated our results on an image database of 167 endoscopic images of the esophagus
bearing strong illumination gradients. These are true color images (768×576) which have
been acquired in 115× zoom mode from 35 patients. Within these images 176 irregular
regions have been labeled manually with one of four tissue classes which were confirmed by
two experienced pathologists after conventional biopsy. We considered benign epithelium,
mucosa of the Cardia and the Corpus and of course different stages of neoplasia (Barrett).

Automatic classification of these regions was done using a selection of eight color texture
algorithms and a nearest neighbor classifier used in a leaving-one-out scheme. The features
used are color histograms, co-occurrence features [HSD73] and color-enabled versions of the



(a) Olympus GIF Q160Z (b) Arrangement of light sources and camera

Figure 3: Olympus GIF Q160Z flexible magnification endoscope with distal chip camera. The
arrangement of light sources and camera leads to inhomogeneous lighting in the field of view.

Table 2: Best Classification rates r and corresponding filter size N show the improvements by
shading correction methods. For each algorithm the best result from a set of filter sizes N ∈
3, 15, 51, 101, 151, 201 is shown. The texture features used are described in [HSD73, MVK+02,
MVP+02].

- Reference Intra-plane YUV
Features r0 rRef rInt N rYUV N
Color Histograms 64% 69% 68% 151 70% 201
Inter Plane S/D 64% 72% 71% 151 72% 201
Gray Level S/D 67% 66% 72% 51/151 66% 101/151
SGF Gray 55% 65% 68% 101 71% 151
SGF I1I2I3 16 62% 68% 63% 201 66% 201
SGF XOR 16 71% 76% 72% 201 74% 51
SGF XOR 4 72% 72% 72% 151/201 75% 101
Co-occurrence 69% 61% 72% 151 67% 201
Mean Improvement - 3% 4% - 5%
Maximal Improvement - 10% 13% - 16%

sum- and difference-histograms (S/D) [MVK+02] and statistical geometrical features (SGF)
[MVP+02].

We compare the classification rates of the intra-plane and the YUV shading correction
method with the results of the reference image based correction according to (2) and without
any preprocessing. The improvement in classification rates serves as another evaluation
measure for our algorithms. For each algorithm the best result from a set of filter sizes
N ∈ {3, 15, 51, 101, 151, 201} is shown in Table 2.

We achieved a mean absolute improvement in classification rates r of 4% for the intra-
plane smoothing with up to 13% maximum improvement, depending on the filter size N.
With 5% mean and 16% maximum improvement, even better results could be obtained by
the YUV smoothing technique. A final comparison with a calibration image based approach
only led to 3% mean and 10% maximum improvement, respectively (see Table 2).

Figure 5 show a representative result of our algorithm applied to an endoscopic image from
our database. From regarding the horizontal profile lines in Figure 5(d)-5(f) the intra-plane



smoothing method seems to remove the shading artifacts better. However, as can be seen
from the comparison of Figure 5(b) and 5(c), the intra-plane method introduces significant
color artifacts which may be the case for the degradation in classification performance as
well. Therefore, despite not being able to remove the shading completely we would prefer
the YUV smoothing algorithm for its superior color reproduction.

5 Conclusion

It can be shown that even for an environment, where a controlled illumination is used, the
reference image based method does not improve automatic classification significantly. That
means the shading effects in gastroesophageal magnification endoscopy are scene dependent
to a significant degree. The improvements in classification show a promising trend applying
shading correction methods in color space. Future work may clarify how more complex
shading correction methods e.g. based on fitting of polynomial shading models or entropy
minimisation methods can be used on color images.
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(a) The Famous Lena (b) Additive Linear Shading (c) YUV Smoothing

(d) RGB Line Profile (e) RGB Line Profile (f) RGB Line Profile

Figure 4: Illustration of the YUV shading correction on the Lena image. Figure (a) shows the well-
known Lena image (b) additive linear shading was applied and (c) corrected with YUV smoothing
with a filter size of 301. Figure (d-f) show the corresponding horizontal RGB line profiles at the
height of the eyes of Lena.

(a) Original Endoscopic Image (b) Intra-Plane Smoothing (c) YUV Smoothing

(d) RGB Line Profile (e) RGB Line Profile (f) RGB Line Profile

Figure 5: Illustration of the intra-plane and YUV shading correction on a real endoscopic image
from our image database. Figure (a) shows the original image with strong gradient to the bottom
right corner, (b) and (c) show the same image with intra-plane and YUV smoothing applied with
filter size 201, respectively. Only slightly visible in print but noteworthy are significant color artifacts
with the intra-plane approach. Figure (d-f) show the corresponding horizontal RGB line profiles at
the center of the image.


